

Chapter-wise Weightage and Trend Analysis of CBSE Past 6 Years' Papers

CHAPTERS	2020		2022		2023		2024		2025	
	DL	ODL								
Relations and Functions	3	7	-	-	5	5	5	6	5	7
Inverse Trigonometric Functions	5	1	-	-	3	3	3	2	3	1
Matrices	3	3	-	-	9	7	9	9	2	5
Determinants	7	7	-	-	1	3	1	1	8	5
Continuity and Differentiability	8	7	-	-	8	4	10	6	9	6
Application of Derivatives	8	9	-	4	6	10	11	10	15	8
Integrals	8	8	8	9	11	11	4	9	5	11
Application of Integrals	6	6	4	-	5	5	6	5	4	6
Differential Equations	5	5	6	5	5	5	4	5	2	4
Vector Algebra	6	4	5	5	7	5	5	7	6	6
Three Dimensional Geometry	8	10	9	9	7	9	9	7	8	8
Linear Programming	5	5	-	-	5	5	5	5	5	5
Probability	8	8	8	8	8	8	8	8	8	8
Total Marks	80	80	40	40	80	80	80	80	80	80

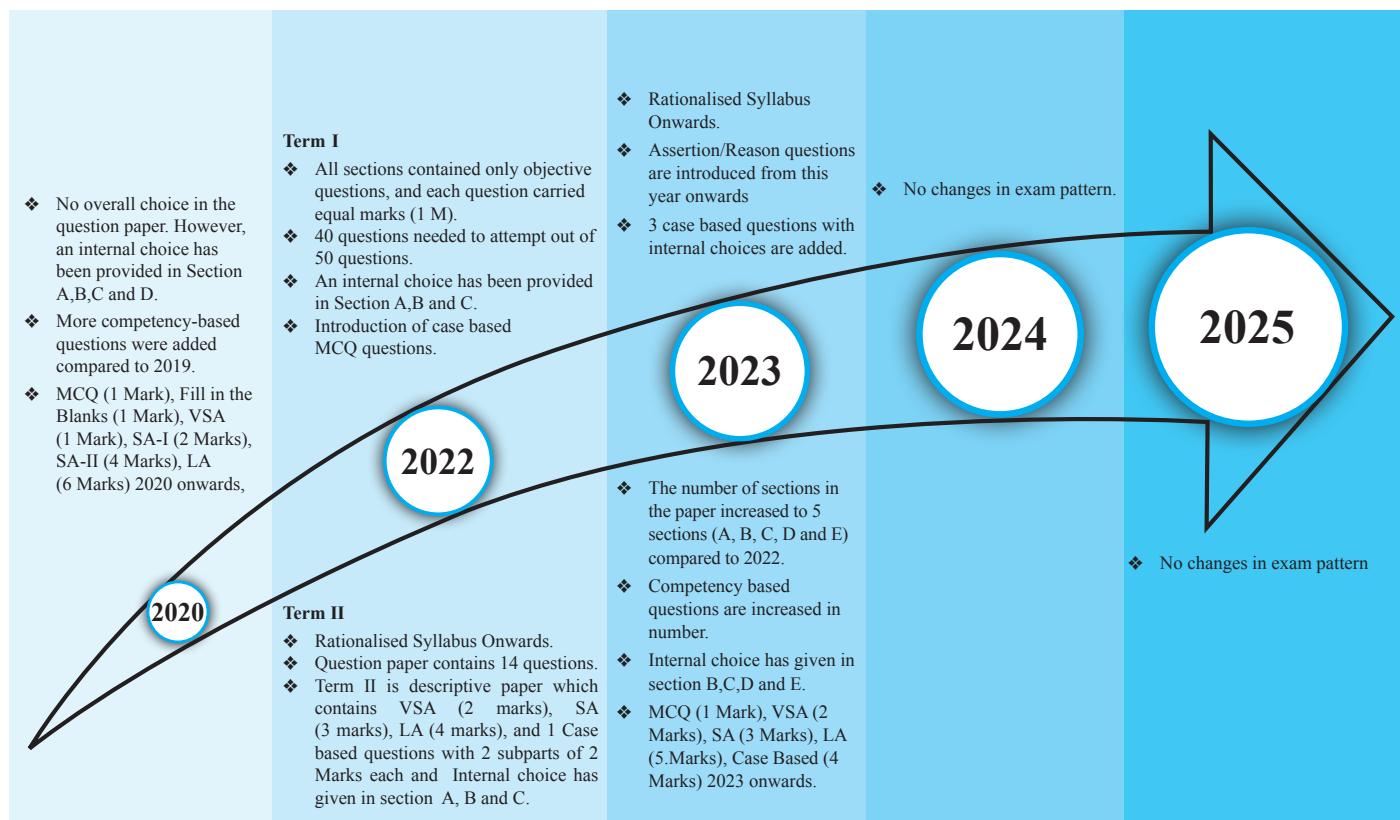
*The marks allotment mentioned above is chapter-wise and includes internal choice questions as well. Therefore, the total might not match the Maximum Marks of the respective Previous Year Paper.

**For the year 2021, the exam was not conducted

Question Typology

YEAR	Objective Questions		Subjective Questions				
	MCQs	A/R	Fill in the Blanks	VSA	SA	LA	Case-Based type
2025	18	2	-	5	6	4	3
2024	18	2	-	5	6	4	3
2023	18	2	-	5	6	4	3
2022 (Term-I)	45	-	-	-	-	-	1
2022 (Term-II)	-	-	-	6	4	3	1
2020	10	-	5	5	6	6	-

Evolving Trends in CBSE Exam Patterns



HOW TO USE THIS BOOK

This book is structured to support your learning journey of preparing for your board exams through a variety of engaging and informative elements. Here's how to make the most of it:

CBSE Solved Paper of 2025 with detailed solutions:
Get yourself updated with the latest Board Question Papers. With provided explanations, learn the effective answering techniques to achieve higher scores.

CBSE Solved Paper

CBSE SOLVED PAPER 2025

SECTION – A (This section comprise of 20 multiple choice questions (MCQs) of 1 mark each)

1. The projection vector of vector \vec{a} on vector \vec{b} is (1 M)

(a) $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$ (b) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\vec{b}$ (c) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\vec{b}$ (d) $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

Ans. (a) The projection of vector \vec{a} onto vector \vec{b} is calculated using the formula, $\text{Proj}_{\vec{b}}\vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

The dot product $\vec{a} \cdot \vec{b}$ is defined as $|\vec{a}||\vec{b}|\cos\theta$, where θ is the angle between the vectors. The correct representation of the projection vector is $\frac{(\vec{a} \cdot \vec{b})}{(|\vec{b}|^2)}\vec{b}$

Other options are incorrect because they either represent scalar projection or involve incorrect magnitudes. The correct result is, $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

2. The function $f(x) = x^2 - 4x + 6$ is increasing in the interval (1 M)

(a) $(0, 2)$ (b) $(-\infty, 2]$ (c) $[1, 2]$ (d) $[2, \infty)$

"Military and ballistics use inverse trigonometry to calculate launch angles for projectiles. In battles and shooting, like when cannons or missiles are fired, getting the right launch angle greatly matters. Figuring out this angle is where inverse trigonometry jumps in. It helps experts decide how to aim these projectiles accurately."

SYLLABUS & WEIGHTAGE

List of Concept Names	Years				
	2020	2022	2023	2024	2025
Domain, Range, Principal Value and Properties of Inverse Trigonometric Functions (Definition, range, domain, principal, value branch, Graphs of inverse trigonometric functions)	1 Q (1 M) 1 Q (2 M)	–	1 Q (1 M) 1 Q (2 M)	1 Q (1 M) 1 Q (2 M)	1 Q (1 M)

Preview

At the start of every chapter, you'll find a thoughtfully chosen image and a quote that captures the main idea and motivation of the topic. This approach aims to get your interest and give you a glimpse of the theme ahead.

Before diving into the details, we outline the syllabus and analyze the weightage given to each topic over the past five years. This helps you prioritize your study focus based on the significance of each section.

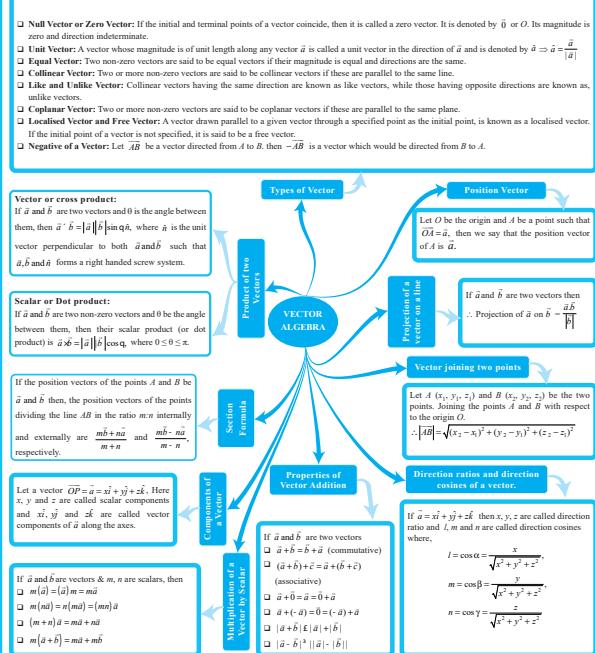
The concept map appears to be a comprehensive study aid that outlines key concepts in a structured format. Use it to understand the chapter's structure and as a quick reference to recall important highlights.

A QR Code to access One Shot Revision Video of the chapter.

Concept Map

CONCEPT MAP

To Access Detailed Revision Notes Scan This QR Code



1 DOMAIN, RANGE, PRINCIPAL VALUE AND PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

Important Terms

- Inverse of a Function: If $f: X \rightarrow Y$ is one-one and onto (bijective) function, then there exists a unique function $f^{-1}: Y \rightarrow X$ which assigns each element $y \in Y$ to a unique element $x \in X$ such that $f(x) = y$ and is called inverse function of f , i.e., $f^{-1}(y) = x \Leftrightarrow f(x) = y$, $x \in X$ and $y \in Y$
- Inverse Trigonometric Functions: Inverse trigonometric functions are defined as the inverse of their respective trigonometric functions. For example, $\arcsin(x)$, $\arccos(x)$, and $\arctan(x)$, but sometimes you might also see them written as $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$.

Important Concepts

- Principal Value Branches: Since trigonometric functions being periodic are in general not bijective (one-one onto) and thus for existence of inverse trigonometric function we restrict their domain and co-domain to make it bijective. This restriction of domain and range gives principal value branch of inverse trigonometric function which are as follows:

Function	Domain	Range (Principal value branch)
$y = \sin^{-1} x$	$[-1, 1]$	$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$y = \cos^{-1} x$	$[-1, 1]$	$[0, \pi]$
$y = \operatorname{cosec}^{-1} x$	$R - (-1, 1)$	$[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$
$y = \sec^{-1} x$	$R - (-1, 1)$	$[0, \pi] - \{\frac{\pi}{2}\}$
$y = \tan^{-1} x$	R	$(-\frac{\pi}{2}, \frac{\pi}{2})$
$y = \cot^{-1} x$	R	$(0, \pi)$

- Principal Values: The value of an inverse trigonometric function which lies in its principal value branch is called principal value of the inverse trigonometric functions.

(a) If $\sin^{-1} x = 0$, then 0 is its principal value when $-\frac{\pi}{2} \leq 0 \leq \frac{\pi}{2}$.

(b) If $\cos^{-1} x = 0$, then 0 is its principal value when $0 \leq 0 \leq \pi$.

(c) If $\tan^{-1} x = 0$, then 0 is its principal value when $-\frac{\pi}{2} < 0 < \frac{\pi}{2}$.

Note:

(i) If no branch of an inverse trigonometric function is mentioned, we mean the principal value branch of that function.

(ii) $\sin^{-1} x \neq \frac{1}{\sin x}$ or $(\sin^{-1} x)^{-1}$ and same holds true for other trigonometric functions also.

(iii) If $\sin^{-1} x = y$ then x and y are the elements of domain and range of principal value branch of \sin^{-1} respectively.

i.e., $x \in [-1, 1]$ and $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Similar fact is also applicable for other inverse trigonometric functions.

Important Formulas:

Introducing important formulas upfront brings clarity to the chapter's objectives, guiding students' focus towards essential mathematical principles that will be explored further.

Important Terms:

Important terms often serve as foundational concepts upon which more complex ideas are built. Introducing them early ensures students have a solid understanding before delving into more advanced topics.

Important Concepts:

Familiarizing with key concepts in advance helps prepare cognitive framework for processing and integrating new information. By highlighting important concepts upfront, students are better equipped to identify connections and relationships between various ideas presented in the chapter.

Important Formulas

Property I:

- (i) $\sin^{-1} \frac{1}{x} = \operatorname{cosec}^{-1} x, x \geq 1$ or $x \leq -1$
- (ii) $\cos^{-1} \frac{1}{x} = \sec^{-1} x, x \geq 1$ or $x \leq -1$

Property II:

- (i) $\sin^{-1}(\sin \theta) = \theta$, for all $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- (ii) $\cos^{-1}(\cos \theta) = \theta$, for all $\theta \in [0, \pi]$
- (iii) $\tan^{-1}(\tan \theta) = \theta$, for all $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$
- (iv) $\operatorname{cosec}^{-1}(\operatorname{cosec} \theta) = \theta$, for all $\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}] \neq 0$
- (v) $\sec^{-1}(\sec \theta) = \theta$, for all $\theta \in [0, \pi], \theta \neq \frac{\pi}{2}$
- (vi) $\cot^{-1}(\cot \theta) = \theta$, for all $\theta \in (0, \pi)$

Property III:

- (i) $\sin(\sin^{-1} x) = x$, for all $x \in [-1, 1]$
- (ii) $\cos(\cos^{-1} x) = x$, for all $x \in [-1, 1]$
- (iii) $\tan(\tan^{-1} x) = x$, for all $x \in R$
- (iv) $\operatorname{cosec}(\operatorname{cosec}^{-1} x) = x$, for all $x \in (-\infty, -1] \cup [1, \infty)$
- (v) $\cot(\cot^{-1} x) = x$, for all $x \in R$

Property IV:

- (i) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, for all $x \in [-1, 1]$
- (ii) $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, for all $x \in R$
- (iii) $\sec^{-1} x + \operatorname{cosec}^{-1} x = \frac{\pi}{2}$, for all $x \in (-\infty, -1] \cup [1, \infty)$

Property V:

- (i) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$
- (ii) $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}, xy > -1$
- (iii) $2\tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}, |x| \leq 1$
- (iv) $2\tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}, x \geq 0$
- (v) $2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}, -1 < x < 1$

Property VI:

Real Life Applications

- Optics And Camera Angles: In photography and optics, understanding angles of view and lens positioning involves inverse trigonometry for capturing precise images and adjusting focus.

- Astronomy and Stargazing: In astronomy, angles to celestial objects are determined using inverse trigonometry. If an observer knows the distance to a star and the angle subtended by it, they can calculate the star's actual position.

- Determining Heights Using Shadows: In architecture, inverse trigonometry aids in finding heights. Suppose an architect assesses the height of a building.

Different Problem Types

Type I: Determining the Principal Value of the Given Inverse Trigonometric Function

Find the principal value of $\sin^{-1} \left(\frac{1}{\sqrt{2}} \right)$.

Solution:

Step I: Let $\sin^{-1} \left(\frac{1}{\sqrt{2}} \right) = y$ then, $\sin y = \frac{1}{\sqrt{2}}$

Step II: We know that the principal value branch of \sin^{-1} is $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and $\sin \left(\frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$

Step III: Now, $\sin^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$, since $\frac{\pi}{4} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Therefore, Principal value of $\sin^{-1} \left(\frac{1}{\sqrt{2}} \right)$ is $\frac{\pi}{4}$.

Real Life Applications:

Connecting abstract math to real scenarios deepens comprehension and aids in problem-solving. Learning how math connects with other subjects shows that it's useful in many areas and helps us understand different topics better.

Different Problem Types:

Presenting different types of problems encourages critical thinking and creativity by challenging students to approach each problem uniquely, analyse it, develop strategies, and adapt their approaches to find solutions. Different problem types challenge students to analyse problems from diverse angles, fostering critical thinking skills essential for problem-solving.

COMPETENCY BASED SOLVED EXAMPLES

Multiple Choice Questions

1. The side of an equilateral triangle is increasing at the rate of 2 cm/s. The rate at which area increases when the side is 10 cm is
(A) 10π (B) 2π (C) 8π (D) 11π (NCERT Exemplar)

(a) $10\text{ cm}^2/\text{s}$ (b) $10/3\text{ cm}^2/\text{s}$
(c) $\sqrt{3}\text{ cm}^2/\text{s}$ (d) $10\sqrt{3}\text{ cm}^2/\text{s}$

Sol. Let x be the side of an equilateral triangle and A be its area.

We know, Area of equilateral triangle, $A = \left(\frac{\sqrt{3}}{4}\right)x^2$ units²

Differentiate both sides with respect to t , we get

$$\frac{dA}{dt} = \left(\frac{\sqrt{3}}{4}\right) \times 2x \times \left(\frac{dx}{dt}\right) \quad \dots(i)$$

Given that $x = 10\text{ cm}$ and $\frac{dx}{dt} = 2\text{ cm/s}$

Now, substitute the values in (i), we get

$$\frac{dA}{dt} = \left(\frac{\sqrt{3}}{4}\right) \times 2 \times (10) \times (2)$$

Therefore, $\frac{dA}{dt} = 10\sqrt{3}\text{ cm}^2/\text{s}$

Mistakes 101: What not to do

Students might mistakenly forget to apply the chain rule correctly when differentiating the area formula.

Key Takeaways

Area of an equilateral triangle, $A = \frac{\sqrt{3}}{4}a^2$ where a is the side length.

2. The total revenue in Rupees received from the sale of x units of a product is given by $R(x) = 3x^2 + 36x + 5$. The marginal revenue, when $x = 15$ is
(A) 116 (B) 96 (C) 90 (D) 126 (NCERT Exemplar)

Sol. Given: Total revenue $R(x) = 3x^2 + 36x + 5$

∴ Marginal revenue = $\frac{d}{dx}R(x) = 6x + 36$

Putting $x = 15$, $\frac{d(R(x))}{dx} = 6(15) + 36 = 126$ (4p)

3. The rate of change of the circumference of a circle with respect to its radius r at $r = 3\text{ cm}$ is
(A) 10π (B) 2π (C) 8π (D) 11π (4p)

Sol. Let z denote the circumference of a circle of radius r .
 $\therefore z = 2\pi r$

\therefore Rate of change of circumference z w.r.t. radius $r = \frac{dz}{dr} = 2\pi$

Putting $r = 3\text{ cm}$ (given), $\frac{dz}{dr} = 2\pi$

\therefore Rate of change of circumference of a circle w.r.t. its radius is always a constant number equal to 2π .

4. The diagonal of a square, of side $3\sqrt{2}\text{ cm}$, is increasing at a rate of 2 cm/s. Which of the following is the rate at which its area is increasing?
(A) $\sqrt{2}\text{ cm}^2/\text{s}$ (B) $6\sqrt{2}\text{ cm}^2/\text{s}$
(C) $12\text{ cm}^2/\text{s}$ (D) $24\text{ cm}^2/\text{s}$ (NCSE CPTQ, 2024)

Sol. Relationship between diagonal D and side s of a square: $D = s\sqrt{2}$.

Differentiate both sides with respect to t : $\frac{dD}{dt} = \sqrt{2}\frac{ds}{dt}$

Given $\frac{dD}{dt} = 2\text{ cm/s} \Rightarrow 2 = \sqrt{2}\frac{ds}{dt} \Rightarrow \frac{ds}{dt} = \frac{2}{\sqrt{2}} = \sqrt{2}\text{ cm/s}$

Area of a square: $A = s^2$.

Differentiate A with respect to t : $\frac{dA}{dt} = 2s \frac{ds}{dt}$

$\Rightarrow \frac{dA}{dt} = 2(3\sqrt{2})(\sqrt{2}) = 2(3 \times 2) = 12\text{ cm}^2/\text{s}$

Solved Examples

For each topic, solved examples are provided including tagging of Competencies, PYQs, CBSE SQPs, etc., that exemplify how to approach and solve questions. This section is designed to reinforce your learning and improve problem solving skills.

MISCELLANEOUS EXERCISE

Multiple Choice Questions

(1 M)

1. A ladder, 5m long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2m from the wall is

(a) $\frac{1}{20}\text{ rad/s}$ (b) $\frac{1}{20}\text{ rad/s}$
(c) 20 rad/s (d) 10 rad/s

2. For all real values of x , the function: $f(x) = x^3 + 3x + 5$ is

(a) strictly decreasing
(b) strictly increasing
(c) increasing
(d) decreasing

8. The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is

(a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$
(b) Strictly decreasing in $(-2, 3)$
(c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$
(d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$

9. Let $f(x) = 2\sin^3 x - 3\sin^2 x + 12\sin x + 5, 0 \leq x \leq \frac{\pi}{2}$. Then $f(x)$ is

(a) decreasing in $\left[0, \frac{\pi}{2}\right]$
(b) increasing in $\left[0, \frac{\pi}{2}\right]$

ANSWER KEYS

Multiple Choice Questions

1. (b) 2. (b) 3. (d) 4. (a) 5. (c) 6. (d) 7. (d) 8. (b) 9. (b) 10. (b)

Assertion and Reason

1. (b) 2. (b) 3. (a) 4. (b) 5. (a) 6. (d)

HINTS & EXPLANATIONS

Multiple Choice Questions

1. (b) Let the angle between floor and the ladder be θ .

Let $AB = x\text{ cm}$ $BC = y\text{ cm}$

$$\Rightarrow x = 500\sin\theta \text{ and } y = 500\cos\theta$$

Also, $\frac{dx}{dt} = 10\text{ cm/s}$

$$\Rightarrow 500 \cdot \cos\theta \cdot \frac{d\theta}{dt} = 10 \text{ cm/s}$$

$$= \frac{180}{\left(\frac{22}{7}\right)} = 180 \times \frac{7}{22} = \frac{90}{11} \times 7 = \frac{630}{11} = 57^\circ \text{ nearly}$$

$\Rightarrow \theta$ is in first quadrant and hence $\cos\theta$ is positive.

∴ From (i), $f'(x) = 100x^2 + \cos x > 0$ and hence $f(x)$ is strictly increasing on $(0, 1)$.

∴ Option (a) is not the correct option.

Let us test option (b) $\left(\frac{\pi}{2}, \pi\right)$

At the end of each chapter, you'll find additional exercises intended to test your grasp of the material. These are great for revision and to prepare for exams.

Answer Key and Explanations including Topper's Explanations, Mistake 101, Nailing the right answer and Key takeaway to know how to write the ideal answer.

Answer Key

Mock Test Papers: Test your preparedness with our Mock Test Papers designed to mirror the format and difficulty of real exams. Use the detailed explanations to identify areas of strength and opportunities for improvement.

MOCK TEST-1

Time allowed : 3 hours Maximum Marks : 80

GENERAL INSTRUCTIONS:

(i) This question paper contains 38 questions. All question are compulsory.
(ii) This question paper is divided into five sections - A, B, C, D and E.
(iii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.
(iv) Use of calculators is not allowed.

SECTION - A

This section comprises multiple choice questions (MCQs) of 1 mark each.

1. If $f(x) = |x - 3|$, then $f'(x)$ is
(a) Discontinuous at $x = 2$
(b) Not differentiable at $x = 2$
(c) Differentiable at $x = 3$
(d) Continuous but not differentiable at $x = 3$

2. If it is given that $f'(1) = 5$ then the value of derivative of $f(e^{i\theta\pi})$ with respect to x at $x = 0$ is
(a) 0 (b) 1 (c) 5 (d) none of these

3. The area bounded by the curve $y = \sin x$ between $x = 0$ and $x = 2\pi$ is
(a) 2 sq. units (b) 4 sq. units (c) 8 sq. units (d) none of these

4. The value of the function $(x - 1)(x - 2)^2$ at its maxima is
(a) 1 (b) 2 (c) 0 (d) $\frac{4}{27}$

5. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} - 3\hat{j} + \hat{k}$, then the projection of \vec{b} on \vec{a} is
(a) 3 (b) 4 (c) 5 (d) 6

6. The order and degree differential equation, $x \left(\frac{d^2y}{dx^2} \right)^3 + \left(\frac{dy}{dx} \right)^4 + y = x^2$ is
(a) Degree 3 and order 2 (b) Degree 1 and order 1 (c) Degree 4 and order 3 (d) Degree 4 and order 4

7. The maximum value of $z = 6x_1 + 10x_2$ subject to constraints $3x_1 + 5x_2 \leq 13$; $5x_1 + 3x_2 \leq 15$ and $x_1 \geq x_2 \geq 0$ is
(a) 10 (b) 20 (c) 40 (d) 26

8. The value of integral $\int_{\pi}^{\frac{\pi}{2}} (x^3 + x \cos x + \tan^5 x + 1) dx$
(a) $-\pi$ (b) π (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$

9. $\int_a^b \frac{\log x}{x} dx =$
(a) $\log\left(\frac{\log b}{\log a}\right)$ (b) $\log(ab)\log\left(\frac{b}{a}\right)$ (c) $\frac{1}{2}\log(ab)\log\left(\frac{b}{a}\right)$ (d) $\frac{1}{2}\log(ab)\log\left(\frac{a}{b}\right)$

CONTENTS

Questions have been categorized according to the Bloom's Taxonomy (as per CBSE Board).

The following abbreviations have been used in the book:

(*Un*) - Understanding
(*An*) - Analysing

(*Re*) - Remembering
(*Cr*) - Creating

(*Ap*) - Applying
(*Ev*) - Evaluating

Upcoming CBSE SQPs/
APQs can be accessed
through this QR

CBSE SOLVED Paper 2025

i-xx

CBSE SOLVED Paper 2024

1-30

1. Relations and Functions	31-54	3. Integrals of Some Particular Functions	272-281
1. Relations	33-38	4. Integration by Partial Fractions	282-293
2. Functions	39-45	5. Integration by Parts	294-302
		6. Definite Integrals and their Properties	303-313
2. Inverse Trigonometric Functions	55-77	8. Application of Integrals	325-345
1. Domain, Range, Principal Value and Properties of Inverse Trigonometric Functions	57-69	1. Area under Simple Curves	327-338
3. Matrices	78-112	9. Differential Equations	346-377
1. Matrices & Its Types	80-90	1. Order and Degree of a Differential Equation	348-350
2. Operations on Matrices	91-102	2. Solution of Differential Equation by Variable Separation Method	351-357
4. Determinants	113-159	3. Solutions of Homogeneous Differential Equations	358-362
1. Determinants and Area of a Triangle	115-124	4. Solutions of Linear Differential Equations	363-369
2. Minors and Cofactors	125-129		
3. Adjoint and Inverse of a Matrix	130-137		
4. Applications of Determinants and Matrices	138-146		
5. Continuity and Differentiability	160-196	10. Vector Algebra	378-420
1. Continuity	162-168	1. Some Basic Concepts of Vector	380-391
2. Differentiability and Derivative of Composite & Inverse Trigonometric Functions	169-176	2. Scalar (Or Dot) Product of Two Vectors	392-401
3. Derivatives of Exponential, Logarithmic, Parametric and Second Order Derivatives	177-186	3. Vector (Or Cross) Product of Vectors	402-412
6. Application of Derivatives	197-254	11. Three Dimensional Geometry	421-456
1. Rate of Change of Quantities	199-206	1. Direction Cosines and Direction Ratios of a Line	423-431
2. Increasing and Decreasing Functions	207-216	2. Equation of a Line in Space	432-447
3. Maxima and Minima	217-232		
7. Integrals	255-324	12. Linear Programming	457-483
1. Integration Involving Basic Algebraic, Exponential, and Trigonometric Functions	257-263	1. Linear Programming Problem of Its Mathematical Formulation	459-472
2. Integration by Substitution	264-271		
Mock Test-1		13. Probability	484-512
Mock Test-2		1. Basic Concepts and Conditional Probability	486-495
		2. Bayes' Theorem, Random Variable and its Probability Distribution	496-504
			515-518
			519-523

CBSE SOLVED PAPER 2025

Time allowed : 3 hours

Maximum Marks : 80

GENERAL INSTRUCTIONS:

Read the following instructions very carefully and strictly follow them:

- (i) This Question paper contains 38 questions. All questions are compulsory.
- (ii) Question paper is divided into five Sections-**Section A, B, C, D and E**.
- (iii) In **Section A** Question number 1 to 18 are Multiple Choice Questions (MCQs) type and question number 19 & 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In **Section B** - Question number 21 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
- (v) In **Section C** - Question number 26 to 31 are Short Answer (SA) type questions carrying 3 marks each.
- (vi) In **Section D** - Question number 32 to 35 are Long Answer (LA) type questions carrying 5 marks each.
- (vii) In **Section E** - Question number 36 to 38 are case Study based questions carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section - B, 3 questions in Section C, 2 questions in Section D and 3 questions in Section E.
- (ix) Use of calculator is NOT allowed.

SECTION – A

(This section comprise of 20 multiple choice questions (MCQs) of 1 mark each)

(20×1=20)

1. The projection vector of vector \vec{a} on vector \vec{b} is (1 M)

(a) $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b}$ (b) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ (c) $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$ (d) $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \right) \vec{b}$

Ans. (a) The projection of vector \vec{a} onto vector \vec{b} is calculated using the formula, $\text{Proj}_{\vec{b}} \vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b}$

The dot product $\vec{a} \cdot \vec{b}$ is defined as $|\vec{a}| |\vec{b}| \cos \theta$, where θ is the angle between the vectors. The correct representation of the projection vector is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b}$

Other options are incorrect because they either represent scalar projection or involve incorrect magnitudes. The correct result is, $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right) \vec{b}$

2. The function $f(x) = x^2 - 4x + 6$ is increasing in the interval (1 M)

(a) $(0, 2)$ (b) $(-\infty, 2]$ (c) $[1, 2]$ (d) $[2, \infty)$

Ans. (d) To determine where the function $f(x) = x^2 - 4x + 6$ is increasing, we first find its derivative,

$$f'(x) = 2x - 4$$

Setting the derivative equal to zero to find critical points,

$$2x - 4 = 0 \Rightarrow x = 2$$

Next, we analyze the sign of $f'(x)$ around the critical point,

For $x < 2$ (e.g., $x = 0$),

$$f'(0) = 2(0) - 4 = -4 \text{ (Negative function is decreasing)}$$

For $x > 2$ (e.g., $x = 3$),

$$f'(3) = 2(3) - 4 = 2 \text{ (positive, function is increasing)}$$

Since $f'(x)$ changes from negative to positive at $x = 2$, the function is decreasing on $(-\infty, 2]$ and increasing on $[2, \infty)$.

The function is increasing in the interval $[2, \infty)$.

3. If $f(2a-x) = f(x)$, then $\int_0^{2a} f(x) dx$ is (1 M)

$$(a) \int_0^{2a} f\left(\frac{x}{2}\right) dx \quad (b) \int_0^a f(x) dx \quad (c) 2 \int_a^0 f(x) dx \quad (d) 2 \int_0^a f(x) dx$$

Ans. (d) Given the symmetry property $f(2a-x) = f(x)$. Consider the integral:

$$I = \int_0^{2a} f(x) dx$$

Split the integral at $x = a$,

$$I = \int_0^a f(x) dx + \int_a^{2a} f(x) dx$$

Using the substitution $t = 2a - x$ in the second integral, $dt = -dx$.

Changing the limits, When $x = a$, $t = a$ & When $x = 2a$, $t = 0$.

$$\text{Thus, } \int_a^{2a} f(x) dx = \int_a^0 f(2a-t)(-dt) = \int_0^a f(t) dt$$

Substituting back,

$$I = \int_0^a f(x) dx + \int_0^a f(x) dx = 2 \int_0^a f(x) dx$$

Hence, The final result is $2 \int_0^a f(x) dx$

4. If $A = \begin{bmatrix} 1 & 12 & 4y \\ 6x & 5 & 2x \\ 8x & 4 & 6 \end{bmatrix}$ is a symmetric matrix, then $(2x+y)$ is (1 M)

$$(a) -8 \quad (b) 0 \quad (c) 6 \quad (d) 8$$

Ans. (d) Given, the symmetric matrix is,

$$A = \begin{bmatrix} 1 & 12 & 4y \\ 6x & 5 & 2x \\ 8x & 4 & 6 \end{bmatrix}$$

For a matrix to be symmetric, $A_{ij} = A_{ji}$. Equating corresponding elements,

$$A_{12} = A_{21} \Rightarrow 12 = 6x \Rightarrow x = 2$$

$$A_{13} = A_{31} \Rightarrow 4y = 8x \Rightarrow 4y = 16 \Rightarrow y = 4$$

Compute $2x + y$,

$$2x + y = 2(2) + 4 = 8$$

5. If $y = \sin^{-1} x$, $-1 \leq x \leq 0$, then the range of y is (1 M)

$$(a) \left(-\frac{\pi}{2}, 0\right) \quad (b) \left[\frac{-\pi}{2}, 0\right] \quad (c) \left[\frac{-\pi}{2}, 0\right) \quad (d) \left(\frac{-\pi}{2}, 0\right]$$

Ans. (b) The function $y = \sin^{-1} x$ has a domain of $[-1, 1]$ and a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. For the restricted domain $-1 \leq x \leq 0$,

$$\text{At } x = -1, y = \sin^{-1}(-1) = -\frac{\pi}{2}.$$

$$\text{At } x = 0, y = \sin^{-1}(0) = 0.$$

Since $\sin^{-1} x$ is continuous and strictly increasing, the range for the given domain is $\left[-\frac{\pi}{2}, 0\right]$

RELATIONS AND FUNCTIONS

1

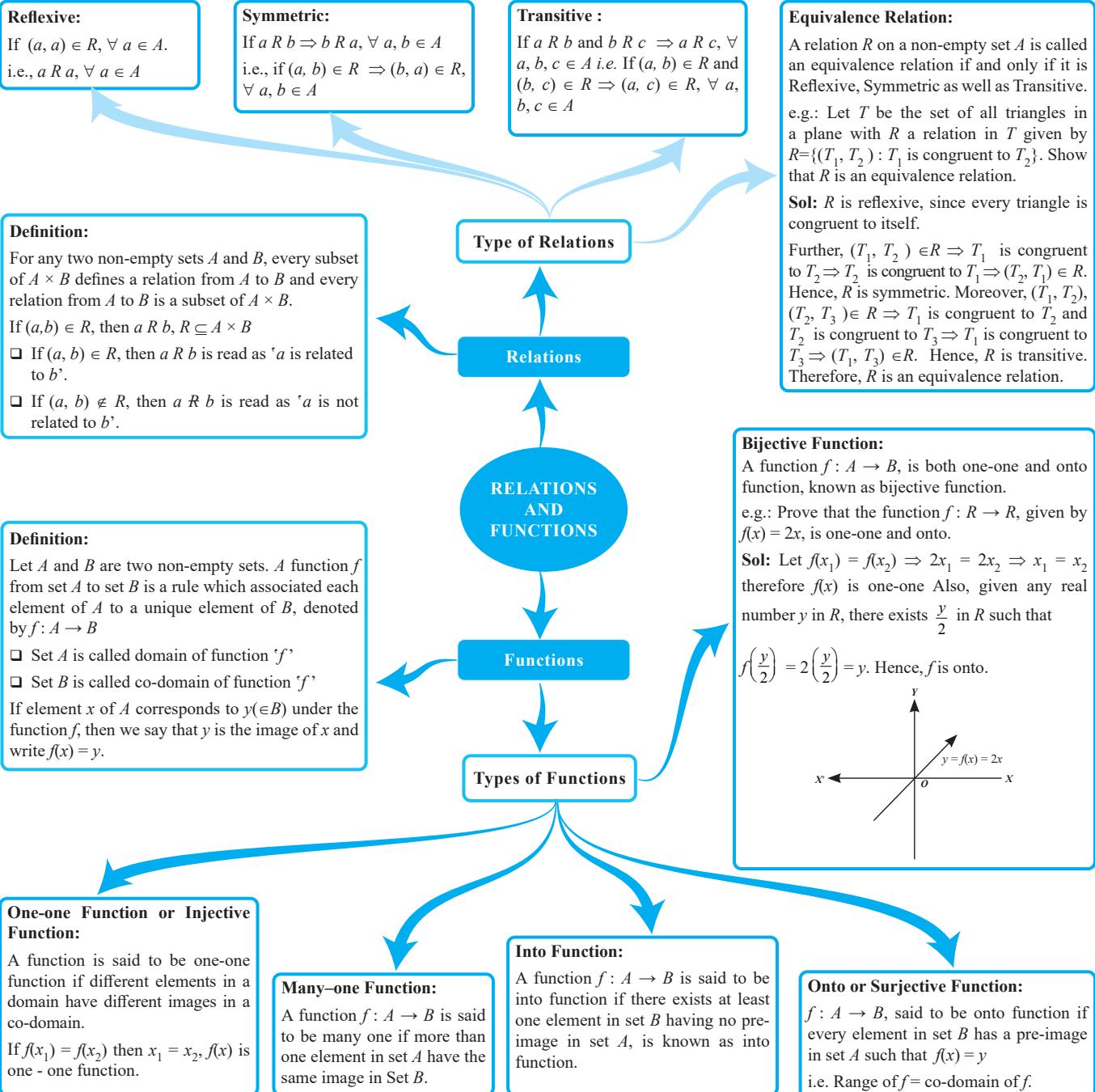
“In databases, relations are data tables, and functions are queries that fetch specific data, making sure each input (like an ID) gives one unique result (like a name).”

SYLLABUS & WEIGHTAGE

List of Concept Names	Years				
	2020	2022	2023	2024	2025
Relations (Type of relations: reflexive, symmetric, transitive and equivalence relations)	1 Q (2 M) 1 Q (4 M)	–	–	1 Q (4 M)	1 Q (3 M)
Functions (One to one and onto functions)	1 Q (1 M)	–	1 Q (5 M)	1 Q (1 M)	1 Q (4 M)

CONCEPT MAP

To Access Detailed
Revision Notes Scan
This QR Code

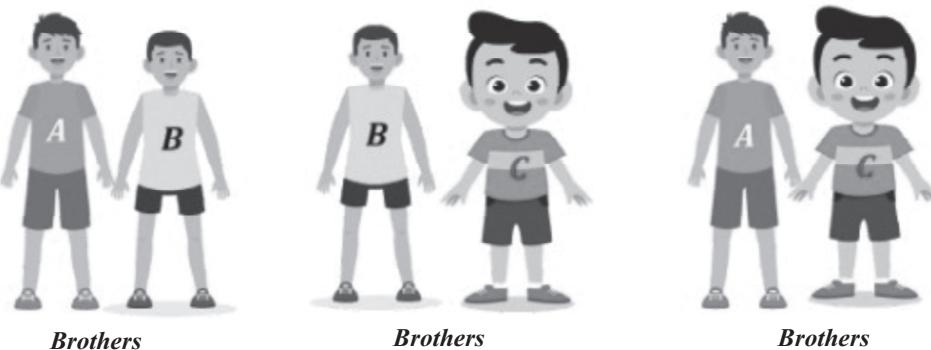


Important Terms

- **Relation:** A relation R from set X to a set Y is defined as a subset of the cartesian product $X \times Y$. We can also write it as $R \subseteq \{(x, y) \in X \times Y : xRy\}$.
- **Empty Relation:** It is the relation R in X given by $R = \emptyset \subset X \times X$.
- **Universal Relation:** It is the relation R in X given by $R = X \times X$.
- **Reflexive Relation:** A relation R defined on a set A is said to be reflexive, if $(x, x) \in R, \forall x \in A$ or $xRx, \forall x \in R$.
- **Symmetric Relation:** A relation R defined on a set A is said to be symmetric, if $(x, y) \in R \Rightarrow (y, x) \in R$, $\forall x, y \in A$ or $xRy \Rightarrow yRx, \forall x, y \in R$.
- **Transitive Relation:** A relation R defined on a set A is said to be transitive, if $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R, \forall x, y, z \in A$ or $xRy, yRz \Rightarrow xRz, \forall x, y, z \in R$.
- **Equivalence Relation:** A relation R defined on a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

Real Life Applications

Relations such as "is a sibling of," "is a parent of," or "is a cousin of" are common in families. Students can relate these relations to their own family trees, understanding how they are related to their siblings, parents, cousins, etc.



Different Problem Types

Show that the relation R in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$ is an equivalence relation.

Solution:

Step I: Prove Reflexivity

R is reflexive, as 2 divides $(a - a)$ for all $a \in Z$.

Step II: Prove Symmetry

Further, if $(a, b) \in R$, then 2 divides $a - b$. Therefore,

2 divides $b - a$. Hence, $(b, a) \in R$, which shows that R is symmetric.

Step III: Prove Transitivity

Similarly, if $(a, b) \in R$ and $(b, c) \in R$, then $a - b$ and $b - c$ are divisible by 2. Now, $a - c = (a - b) + (b - c)$ is even. So, $(a - c)$ is divisible by 2. This shows that R is transitive.

Thus, R is an equivalence relation in Z .

Example 1: Let A be the set of all students of a boys school. Show that the relation R in A given by $R = \{(a, b) : a \text{ is sister of } b\}$ is the empty relation and $R' = \{(a, b) : \text{the difference between heights of } a \text{ and } b \text{ is less than 3 meters}\}$ is the universal relation.

Solution: Since the school is boys school, no student of the school can be sister of any student of the school.

Hence, $R = \emptyset$, showing that R is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than 3 meters.

This shows that $R' = A \times A$ is the universal relation.

Example 2: If R_1 and R_2 are equivalence relations in a set A , show that $R_1 \cap R_2$ is also an equivalence relation.

Solution: Since R_1 and R_2 are equivalence relations, $(a, a) \in R_1$, and $(a, a) \in R_2 \forall a \in A$. This implies that $(a, a) \in R_1 \cap R_2$, $\forall a$, showing $R_1 \cap R_2$ is reflexive.

Further, $(a, b) \in R_1 \cap R_2 \Rightarrow (a, b) \in R_1$ and $(a, b) \in R_2 \Rightarrow (b, a) \in R_1$ and $(b, a) \in R_2 \Rightarrow (b, a) \in R_1 \cap R_2$, hence, $R_1 \cap R_2$ is symmetric.

Similarly, $(a, b) \in R_1 \cap R_2$ and $(b, c) \in R_1 \cap R_2 \Rightarrow (a, c) \in R_1$ and $(a, c) \in R_2 \Rightarrow (a, c) \in R_1 \cap R_2$. This shows that $R_1 \cap R_2$ is transitive.

Thus, $R_1 \cap R_2$ is an equivalence relation.

COMPETENCY BASED SOLVED EXAMPLES

Multiple Choice Questions

(1 M)

1. Let R be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer. (Ev) (NCERT Intext)

- (a) R is reflexive and symmetric but not transitive.
- (b) R is reflexive and transitive but not symmetric.
- (c) R is symmetric and transitive but not reflexive.
- (d) R is an equivalence relation.

Sol. Here, $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$

Since, $(a, a) \in R$, for every $a \in \{1, 2, 3, 4\}$. Therefore, R is reflexive.

Now since $(1, 2) \in R$ but $(2, 1) \notin R$. Therefore, R is not symmetric.

Also, it is observed that $(a, b), (b, c) \in R$.

$\Rightarrow (a, c) \in R$. For all $a, b, c \in \{1, 2, 3, 4\}$.

Therefore, R is transitive. Hence, R is reflexive and transitive but not symmetric.

2. Let set $X = \{1, 2, 3\}$ and a relation R is defined in X as: $R = \{(1, 3), (2, 2), (3, 2)\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are (An) (CBSE, 2022 Term-I)

- (a) $\{(1, 1), (2, 3), (1, 2)\}$
- (b) $\{(3, 3), (3, 1), (1, 2)\}$
- (c) $\{(1, 1), (3, 3), (3, 1), (2, 3)\}$
- (d) $\{(1, 1), (3, 3), (3, 1), (1, 2)\}$

Sol. (i) R is reflexive if it contains $\{(1, 1), (2, 2) \text{ and } (3, 3)\}$.

Since, $(2, 2) \in R$. So, we need to add $(1, 1)$ and $(3, 3)$ to make R reflexive.

(ii) R is symmetric if it contains $\{(2, 2), (1, 3), (3, 1), (3, 2), (2, 3)\}$.

Since, $\{(2, 2), (1, 3), (3, 2)\} \in R$. So, we need to add $(3, 1)$ and $(2, 3)$.

Thus, minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are $\{(1, 1), (3, 3), (3, 1), (2, 3)\}$.

Nailing the Right Answer

Students should check if the relation includes all the pairs necessary for reflexivity and symmetry.

3. Let R be a relation on the set N of natural numbers defined by nRm if n divides m . Then R is (Un) (NCERT Exemplar)

- (a) Reflexive and symmetric
- (b) Transitive and symmetric
- (c) Equivalence
- (d) Reflexive, transitive but not symmetric

Sol. 1. **Reflexive property:** Check if every natural number n divides itself.

- Yes, because any number divided by itself gives a quotient of 1.

2. **Transitive property:** Check if n divides m and m divides p implies n divides p .

- Yes, if n divides m and m divides p , then n divides p (by the transitive property of divisibility).

3. **Symmetric property:** Check if n divides m implies m divides n .

- No, this is not necessarily true. For example, 2 divides 4 (2R4), but 4 does not divide 2 (not 4R2).

Hence, R is reflexive, transitive but not symmetric.

4. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b . Then R is (Ap) (NCERT Exemplar)

- (a) symmetric but not transitive
- (b) transitive but not symmetric
- (c) neither symmetric nor transitive
- (d) both symmetric and transitive

Sol. Since a can't be brother of a so $(a, a) \notin R$ for any a belonging to the family.

This relation is not symmetric as if $(a, b) \in R$ then $(b, a) \notin R$ as if a is brother of b this means b can be sister of a for any a, b belonging to the family.

But this relation is also transitive as if a is brother of b and b is brother of c then certainly a is brother of c i.e. $(a, b) \in R$, $(b, c) \in R \Rightarrow (a, c) \in R$ for all a, b, c belonging to the family. So the relation is not symmetric but transitive.

5. Let the relation R in the set $A = \{x \in \mathbb{Z} : 0 \leq x \leq 12\}$, given by $R = \{(a, b) : |a - b| \text{ is a multiple of } 4\}$. Then [1], the equivalence class containing 1, is (Ev)

- (a) $\{1, 5, 9\}$
- (b) $\{0, 1, 2, 5\}$
- (c) \emptyset
- (d) A

Sol. Equivalence class [1] is the set of elements related to 1 = $\{1, 5, 9\}$.

6. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then (An)

- (a) $(2, 4) \in R$
- (b) $(3, 8) \in R$
- (c) $(6, 8) \in R$
- (d) $(8, 7) \in R$

Sol. $6 = 8 - 2$, $(6, 8)$ is an element of R .

7. The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are (Un)

- (a) 1
- (b) 2
- (c) 3
- (d) 5

Sol. Given that, $A = \{1, 2, 3\}$

Now, number of equivalence relations are as follows:

$$\begin{aligned} R_1 &= \{(1, 1), (2, 2), (3, 3)\} \\ R_2 &= \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\} \\ R_3 &= \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\} \\ R_4 &= \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\} \\ R_5 &= \{(1, 2, 3) \Leftrightarrow A \times A = A^2\} \end{aligned}$$

\therefore Maximum number of equivalence relations on the set $A = \{1, 2, 3\} = 5$

Answer Key

1. (q)	2. (c)	3. (p)	4. (q)
5. (a)	6. (c)	7. (p)	8. (c)

Assertion and Reason (1 M)

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.

1. **Assertion (A):** The relation $f : \{1, 2, 3, 4\} \rightarrow \{x, y, z, p\}$ defined by $f = \{(1, x), (2, y), (3, z)\}$ is a bijective function.

Reason (R): The function $f : \{1, 2, 3\} \rightarrow \{x, y, z, p\}$ such that $f = \{(1, x), (2, y), (3, z)\}$ is one-one.

(An) (CBSE SQP, 2023)

Sol. Assertion is false. As element 4 has no image under f , so relation f is not a function.

Reason is true. The given function $f : \{1, 2, 3\} \rightarrow \{x, y, z, p\}$ is one-one, as for each $a \in \{1, 2, 3\}$, there is different image in $\{x, y, z, p\}$ under f .

2. Consider the set $A = \{1, 3, 5\}$

Assertion (A): The number of reflexive relations on set A is 2^9 .

Reason (R): A relation is said to be reflexive if xRx , $\forall x \in A$. (Cr)

Sol. By definition, a relation in A is said to be reflexive if xRx , $\forall x \in A$. So R is true.

The number of reflexive relations on a set containing n elements is $2^{n^2 - n}$.

Here $n = 3$

The number of reflexive relations on a set $A = 2^{9-3} = 2^6$.

Hence A is false.

Mistakes 101 : What not to do!

Students might incorrectly calculate reflexive relations by using the wrong formula, $2^{n^2 - n}$ instead of 2^{n^2} .

Key Takeaways

For a set with n elements, the number of reflexive relations is $2^{n^2 - n}$.

3. If $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (3, 6)\}$ is a function from A to B .

Assertion (A): $f(x)$ is a one-one function.

Reason (R): $f(x)$ is an onto function. (Cr)

Sol. Given, $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and $f: A \rightarrow B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ i.e., $f(1) = 4$, $f(2) = 5$ and $f(3) = 6$.

It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one.

So, A is true.

Range of $f = \{4, 5, 6\}$.

Co-domain = $\{4, 5, 6, 7\}$.

Since co-domain \neq range, $f(x)$ is not an onto function. Hence R is false.

Answer Key

(s) **• E**

(p) **• 2**

(p) **• 1**

Subjective Questions

Very Short Answer Type Questions

(1 or 2 M)

1. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive. (An) (NCERT Intext)

Sol. R is reflexive, since $(1, 1)$, $(2, 2)$ and $(3, 3)$ lie in R . Also, R is not symmetric, as $(1, 2) \in R$ but $(2, 1) \notin R$. (1 M)

Similarly, R is not transitive, as $(1, 2) \in R$ and $(2, 3) \in R$ but $(1, 3) \in R$. (1 M)

2. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $g(x) = \alpha x + \beta$, then what value should be assigned to α and β ? (Un)

Sol. Given that, $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$

Here, each element of domain has unique image. So, g is a function.

Now given that,

$$g(x) = \alpha x + \beta$$

$$g(1) = \alpha + \beta$$

$$\alpha + \beta = 1 \quad \dots(i) \quad (\frac{1}{2} M)$$

$$g(2) = 2\alpha + \beta$$

$$2\alpha + \beta = 3 \quad \dots(ii) \quad (\frac{1}{2} M)$$

From Eqs. (i) and (ii).

$$2(1 - \beta) + \beta = 3 \Rightarrow 2 - 2\beta + \beta = 3 \Rightarrow 2 - \beta = 3$$

$$\beta = -1$$

$$\text{if } \beta = -1, \text{ then } \alpha = 2$$

$$\alpha = 2, \beta = -1 \quad (1 M)$$

Nailing the Right Answer

Students should ensure that each element in the domain has a unique image to confirm it's a function. They should use the given values to find α and β .

3. Let $A = \{a, b, c\}$ and the relation R be defined on A as follows $R = \{(a, a), (b, c), (a, b)\}$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive. (Ev)

Sol. Given relation, $R = \{(a, a), (b, c), (a, b)\}$.

To make R is reflexive we must add (b, b) and (c, c) to R . Also, to make R is transitive we add (a, c) to R . (1 M)

So, minimum number of ordered pair is to be added are (b, b) , (c, c) , (a, c) . (1 M)

4. If the relation R be defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 8\}$. Then, R is given by (Ap)

Sol. Given, $A = \{1, 2, 3, 4, 5\}$,

$$R = \{(a, b) : |a^2 - b^2| < 8\} \quad (1 M)$$

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 3), (3, 4), (4, 4), (5, 5)\} \quad (1 M)$$

5. Let the relation R be defined in N by aRb , if $2a + 3b = 30$. Then, $R =$ (Ev)

Sol. Given that, $2a + 3b = 30$

$$\Rightarrow 3b = 30 - 2a \Rightarrow b = 30 - 2a/3 \quad (1 M)$$

For, $a = 3, b = 8$:

$a = 6, b = 6$:

$a = 9, b = 4$:

$a = 12, b = 2$:

$$R = \{(3, 8), (6, 6), (9, 4), (12, 2)\} \quad (1 M)$$

Short Answer Type Questions

(2 or 3 M)

1. Show that the relation R in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$ is an equivalence relation. (Un) (NCERT Intext)

Sol. R is reflexive, as 2 divides $(a - a)$ for all $a \in Z$. (\frac{1}{2} M)

Further, if $(a, b) \in R$, then 2 divides $a - b$. Therefore, 2 divides $b - a$. Hence, $(b, a) \in R$, which shows that R is symmetric. (1 M)

Similarly, if $(a, b) \in R$ and $(b, c) \in R$, then $a - b$ and $b - c$ are divisible by 2. Now, $a - c = (a - b) + (b - c)$ is even. So, $(a - c)$ is divisible by 2. This shows that R is transitive. (1 M)

Thus, R is an equivalence relation in Z . (\frac{1}{2} M)

2. Check if the relation R in the set R of real numbers defined as $R = \{(a, b) : ab\}$ is (i) symmetric, (ii) transitive (Un) (CBSE,2020)

Sol. (i) It is not symmetric because if $a < b$ then $b < a$ is not true. (1 M)

(ii) Here, if $a < b$ and $b < c$ then $a < c$ is also true for all a, b, c Real numbers. Therefore R is transitive. (1 M)

3. Let n be a fixed positive integer. Define a relation R in Z as follows $\forall a, b \in Z, aRb$ if and only if $a - b$ is divisible by n . Show that R is an equivalence relation. (Cr)

Sol. Given that, $\forall a, b \in Z, aRb$ if and only if $a - b$ is divisible by n .

Now,

Reflexive

$aRa \Rightarrow (a - a)$ is divisible by n , which is true for any integer a as '0' is divisible by n .

Hence, R is reflexive. (1 M)

Symmetric

aRb

$\Rightarrow a - b$ is divisible by n .

$\Rightarrow -b + a$ is divisible by n

$\Rightarrow -(b - a)$ is divisible by n .

$\Rightarrow (b - a)$ is divisible by n .

$\Rightarrow bRa$

Hence, R is symmetric (1 M)

Transitive

Let aRb and bRc

$\Rightarrow (a - b)$ is divisible by n and $(b - c)$ is divisible by n

$\Rightarrow (a - b) + (b - c)$ is divisible by n

$\Rightarrow (a - c)$ is divisible by n

$\Rightarrow aRc$

Hence, R is transitive.

So, R is an equivalence relation. (1 M)

4. A relation R in set $G = \{\text{All the countries in the world is defined as } R = \{(x, y) : x \text{ and } y \text{ share a common boundary}\}$. Determine whether R is reflexive, symmetric and transitive. Hence, conclude if R is an equivalence relation. Show your work. (Un) (CBSE CFPQ, 2024)

Sol. Writes that every country shares its boundary with itself.

That is, $(x, x) \in R$, for each element $x \in G$.

Hence, R is reflexive. (½ M)

Writes that, whenever x shares a boundary with y , y also shares a boundary with x . That is, $(x, y) \in R \Rightarrow (y, x) \in R$. Hence, R is symmetric. (1 M)

Writes that, if x shares a boundary with y and y shares a boundary with z , then x need not share a boundary with z .

That is, $(x, y) \in R, (y, z) \in R$ need not imply $(x, z) \in R$. Hence, R is not transitive. (1 M)

From the above steps, concludes that R is not an equivalence relation. (½ M)

5. Show that the relation R on R defined as $R = \{(a, b) : a \leq b\}$, is reflexive, and transitive but not symmetric. (Un)

Sol. Clearly $a \leq a \forall a \in R \Rightarrow (a, a) \in R \Rightarrow R$ is reflexive. (1 M)

For transitive:

Let $(a, b) \in R$ and $(b, c) \in R, a, b, c \in R$

$\Rightarrow a \leq b$ and $b \leq c \Rightarrow a \leq c \Rightarrow (a, c) \in R$

$\Rightarrow R$ is transitive. (1 M)

For non-symmetric:

Let $a = 1, b = 2$, As $1 \leq 2 \Rightarrow (1, 2) \in R$

but $2 \not\leq 1, \Rightarrow (2, 1) \notin R$

$\Rightarrow R$ is non-symmetric. (1 M)

Topper's Explanation

(CBSE 2019)

$$R = \{(a, b) : a \leq b\}$$

REFLEXIVE :

Every element $a \in R$ is equal to itself

$$\Rightarrow a = a$$

$\Rightarrow a \leq a$ is true

$\therefore (a, a) \in R$ for all $a \in R$ where $R = \text{set of real nos}$
The relation is REFLEXIVE $\therefore R$ is a relation.

TRANSITIVE :

For all $(a, b) \in R$ and $(b, c) \in R$

$$a \leq b \text{ and } b \leq c$$

$$\Rightarrow a \leq c$$

$$\Rightarrow (a, c) \in R$$

\therefore The set is a relation is TRANSITIVE

$$\therefore \text{for } (a, b), (b, c) \in R, (a, c) \in R \text{ if } (a, b) \in R$$

SYMMETRIC : For relation to be symmetric,
for all $(a, b) \in R, (b, a)$ should also exist in R

$$a \leq b \Rightarrow a \leq b$$

$b \not\leq a \rightarrow$ This relation is true only when $a = b$.

$$\text{For ex: } \frac{1}{2} \leq 1 \Rightarrow \left(\frac{1}{2}, 1\right) \in R$$

$$\text{but } 1 \not\leq \frac{1}{2} \therefore \left(1, \frac{1}{2}\right) \notin R$$

\therefore Relation is NOT SYMMETRIC

Long Answer Type Questions

(4 or 5 M)

1. Let R be a relation defined on the set of natural numbers N as follows: $R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation R . Also verify whether R is reflexive, symmetric and transitive. (Un)

Sol. Given that,

$$R = \{(1, 39), (2, 37), (3, 35) \dots (19, 3), (20, 1)\}$$

Domain = $\{1, 2, 3, \dots, 20\}$ (1 M)

Range = $\{1, 3, 5, 7, \dots, 39\}$ (1 M)

R is not reflexive as $(2, 2) \notin R$ as $2 \times 2 + 2 \neq 41$.

R is not symmetric as $(1, 39) \in R$ but $(39, 1) \notin R$. (1 M)

R is not transitive as $(11, 19) \in R, (19, 3) \in R$

But $(11, 3) \notin R$. (1 M)

Hence, R is neither reflexive, nor symmetric and nor transitive. (1 M)

2. Let \mathbb{N} be the set of all natural numbers and R be a relation on $\mathbb{N} \times \mathbb{N}$ defined by $(a, b) R (c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. Show that R is an equivalence relation on $\mathbb{N} \times \mathbb{N}$. Also, find the equivalence class of $(2, 6)$, i.e., $[(2, 6)]$. (Cr) (CBSE SQP, 2023)

Sol. Let (a, b) be an arbitrary element of $\mathbb{N} \times \mathbb{N}$. Then, $(a, b) \in \mathbb{N} \times \mathbb{N}$ and $a, b \in \mathbb{N}$.

We have, $ab = ba$; (As $a, b \in \mathbb{N}$ and multiplication is commutative on \mathbb{N}) (1 M)

$\Rightarrow (a, b) R (a, b)$, according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$

Thus $(a, b) R (a, b), \forall (a, b) \in \mathbb{N} \times \mathbb{N}$.

So, R is reflexive relation on $\mathbb{N} \times \mathbb{N}$. (1/2 M)

Let $(a, b), (c, d)$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that $(a, b) R (c, d)$.

Then, $(a, b) R (c, d) \Rightarrow ad = bc \Rightarrow bc = ad$; (changing LHS and RHS)

$\Rightarrow cb = da$; (As $a, b, c, d \in \mathbb{N}$ and multiplication is commutative on \mathbb{N})

$\Rightarrow (c, d) R (a, b)$; according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$

Thus $(a, b) R (c, d) \Rightarrow (c, d) R (a, b)$

So, R is symmetric relation on $\mathbb{N} \times \mathbb{N}$. (1 M)

Let $(a, b), (c, d), (e, f)$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that $(a, b) R (c, d)$ and $(c, d) R (e, f)$.

Then $\begin{cases} (a, b) R (c, d) \Rightarrow ad = bc \\ (c, d) R (e, f) \Rightarrow cf = de \end{cases} \Rightarrow (ad)(cf) = (bc)(de)$

$\Rightarrow af = be$ (1 M)

$\Rightarrow (a, b) R (e, f)$; (according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$)

Thus $(a, b) R (c, d)$ and $(c, d) R (e, f) \Rightarrow (a, b) R (e, f)$

So, R is transitive relation on $\mathbb{N} \times \mathbb{N}$.

As the relation R is reflexive, symmetric and transitive so, it is equivalence relation on $\mathbb{N} \times \mathbb{N}$. (1 M)

$[(2, 6)] = \{(x, y) \in \mathbb{N} \times \mathbb{N} : (x, y) R (2, 6)\}$

$= \{(x, y) \in \mathbb{N} \times \mathbb{N} : 3x = y\}$

$= \{(x, 3x) : x \in \mathbb{N}\} = \{(1, 3), (2, 6), (3, 9), \dots\}$ (1/2 M)

3. If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b) : a, b \in Z \text{ and } a - b \text{ is divisible by } 5\}$. Prove that R is an equivalence relation. (Ap)

Sol. The given relation is $R = \{(a, b) : a, b \in Z \text{ and } a - b \text{ is divisible by } 5\}$:

Reflexive:

As for any $x \in Z$, we have $x - x = 0$, which is divisible by 5.

$\Rightarrow (x, x)$ is divisible by 5.

$\Rightarrow (x, x) \in R, \forall x \in Z$ Therefore, R is reflexive. (1 M)

Symmetric:

Let $(x, y) \in R$, where $x, y \in Z$.

$\Rightarrow (x - y)$ is divisible by 5. [by definition of R] (1/2 M)

$\Rightarrow x - y = 5A$ for some $A \in Z$.

$\Rightarrow x - y = 5(-A) \Rightarrow (y - x)$ is also divisible by 5.

$\Rightarrow (y, x) \in R$.

Therefore, R is symmetric. (1 M)

Transitive:

Let $(x, y) \in R$, where $x, y \in Z$.

$\Rightarrow (x - y)$ is divisible by 5.

$\Rightarrow x - y = 5A$ for some $A \in Z$ Again, let $(y, z) \in R$, where $y, z \in Z$.

$\Rightarrow (y - z)$ is divisible by 5.

$\Rightarrow y - z = 5B$ for some $B \in Z$ (1 M)

Now, $(x - y) + (y - z) = 5A + 5B$

$\Rightarrow x - z = 5(A + B)$

$\Rightarrow (x - z)$ is divisible by 5 for some $(A + B) \in Z$

$\Rightarrow (x, z) \in R$

Therefore, R is transitive. (1 M)

Thus, R is reflexive, symmetric and transitive. Hence, it is an equivalence relation. (1/2 M)

Mistakes 101 : What not to do!

Students might forget to verify all three properties (reflexivity, symmetry, and transitivity) or misunderstand the condition for divisibility by 5.

Key Takeaways

For a relation to be an equivalence relation, it must be reflexive, symmetric and transitive. Check each property individually:

- Reflexivity: (a, a) is in R for all $a \in Z$.
- Symmetric: if (a, b) is in R , then (b, a) must also be in R .
- Transitivity: if (a, b) and (b, c) are in R , then (a, c) must be in R .

4. If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being

(i) reflexive, transitive but not symmetric.

(ii) symmetric but neither reflexive nor transitive.

(iii) reflexive, symmetric and transitive. (Un)

Sol. Given that, $A = \{1, 2, 3, 4\}$

(i) Let $R_1 = \{(1, 1), (1, 2), (2, 3), (2, 2), (1, 3), (3, 3)\}$

R_1 is reflexive, since, $(1, 1), (2, 2), (3, 3)$ lie in R_1 .

Now, $(1, 2) \in R_1, (2, 3) \in R_1 \Rightarrow (1, 3) \in R_1$. (1 M)

Hence, R_1 is also transitive but $(1, 2) \in R_1$

$\Rightarrow (2, 1) \notin R_1$.

So, it is not symmetric. (1 M)

(ii) Let $R_2 = \{(1, 2), (2, 1)\}$

Now, $(1, 2) \in R_2, (2, 1) \in R_2$

So, it is symmetric. (1 M)

(iii) Let $R_3 = \{(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (1, 3), (3, 1), (2, 3)\}$

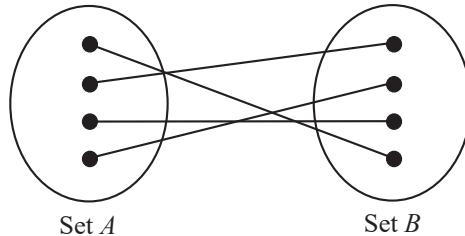
R_3 is reflexive, symmetric and transitive. (1 M)

Hence, R_3 is reflexive, symmetric and transitive. (1 M)

2 | FUNCTIONS

Important Terms

- Functions: A function f from a set A to a set B is a rule which associates each element of set A to a unique element of set B .



Set A is domain and set B is co-domain of the function

- Range: Range is the set of all possible resulting value given by the function. For example: x^2 is a function where values of x will be the domain and value given by x^3 is range.

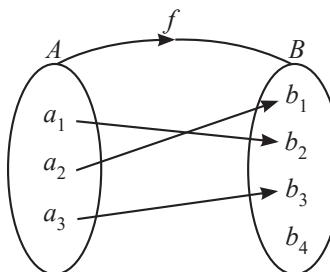
- Types of Functions: As we know that if $f: A \rightarrow B$ is a function, then f associates all the elements of set A to the elements in set B such that an element of set A is associated to a unique element of set B . But there are some more possibilities, which may occur in a function, such as

- more than one elements of A may have same image in
- each elements of B is image of some elements of A .
- there may be some elements in B , which are not the images of any element of A .

Important Concepts

- One-One (Injective) Function: A function $f: A \rightarrow B$ is called a one-one or injective function, if distinct elements of A have distinct images in B , i.e. for every $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$ and if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

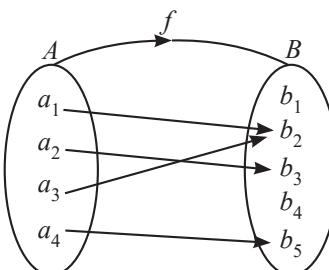
e.g. Let $f: A \rightarrow B$ be a function represented by the following diagram.



Here, f is a one-one function, because each element have distinct image.

- Many-One Function: A function $f: A \rightarrow B$ is called a many-one function, if there exist atleast two distinct elements in A , whose images are same in B , i.e. if there exist $a_1, a_2 \in A$, such that $a_1 \neq a_2$ and $f(a_1) = f(a_2)$, then f is many-one. In other words, a function $f: A \rightarrow B$ is called a many-one function, if it is not one-one.

e.g. Let $f: A \rightarrow B$ be a function represented by the following diagram.



Here, f is many-one function, because a_1 and a_3 have same image b_2 .

□ **Onto Function:** A function f from set A to set B is called onto function if each element of set B has a preimage in set A or range of function f is equal to the codomain i.e., set B .

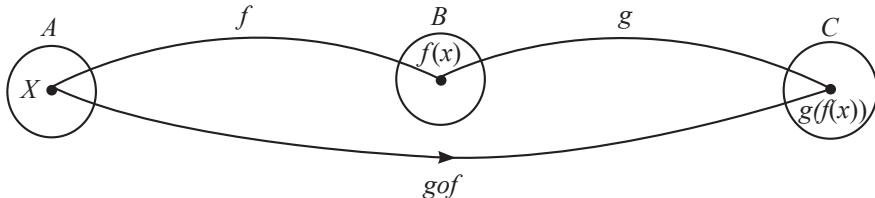
Onto function is also called surjective function.

For example: If a function f from a set of natural number to a set of n Natural number, then $f(x) = x - 1$ is onto function.

□ **Bijective Function:** A function f from set A to set B is called bijective function if it is both one-one function and onto function.

For example: If a function f from a set of real number to a set of real number, then $f(x) = 2x$ is one-one function and onto function.

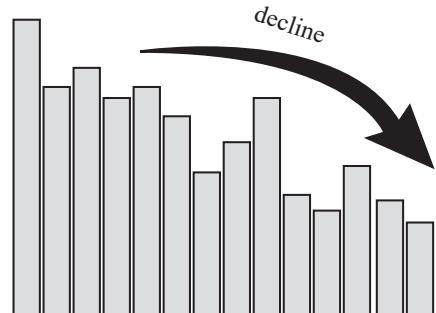
□ **Composition of Functions:** Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then the composition of f and g , denoted by gof , is defined as the function $gof: A \rightarrow C$ given by $gof(x) = g(f(x))$, $\forall x \in A$.



□ **Invertible Function:** A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$ such that $gof = I_X$ and $fog = I_Y$. The function g is called the inverse of f and is denoted by f^{-1} . Thus, if f is invertible, then f must be one-one and onto and conversely, if f is one-one and onto, then f must be invertible.

Real Life Applications

Functions, have real-world applications in economics (profit functions), physics (distance-time graphs), temperature conversions, population growth modeling, financial calculations (loan amortization), signal processing (telecommunications), and statistical analysis (probability distributions, regression analysis).



Different Problem Types

To show that f is one-to-one, we'll prove that if $f(x_1) = f(x_2)$, then $x_1 = x_2$ for all x_1, x_2 in the domain Z .

Solution:

Step I: Assumption: Assume $f(x_1) = f(x_2)$.

Using the function $f(x) = x^2$: $x_1^2 = x_2^2$

Step II: Taking the square root of both sides (considering the absolute value since we're dealing with integers):

$$|x_1| = |x_2|$$

Step III: Implication: Since the absolute value of a number is always non-negative, this implies either $x_1 = x_2$ or $x_1 = -x_2$.

Step IV: Conclusion: Since $x_1 = -x_2$ contradicts the definition of the domain (integers), we conclude that $x_1 = x_2$.

Thus, for any two integers x_1 and x_2 , if $f(x_1) = f(x_2)$, then $x_1 = x_2$. Therefore, f is one-to-one (injective).

Example 1: Show that $f: N \rightarrow N$, given by $f(x) = \begin{cases} x+1 & \text{if } x \text{ is odd} \\ x-1 & \text{if } x \text{ is even} \end{cases}$ is both one-one and onto.

Solution: Suppose $f(x_1) = f(x_2)$. Note that if x_1 is odd and x_2 is even, then we will have $x_1 + 1 = x_2 - 1$, i.e., $x_2 - x_1 = 2$ which is impossible. Similarly, the possibility of x_1 being even and x_2 being odd can also be ruled out, using the similar argument. Therefore, both x_1 and x_2 must be either odd or even.

Suppose both x_1 and x_2 are odd. Then $f(x_1) = f(x_2)$

$$\Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2.$$

Similarly, if both x_1 and x_2 are even, then also $f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$. Thus, f is one-one.

Also, any odd number $2r + 1$ in the co-domain N is the image of $2r + 2$ in the domain N and any even number $2r$ in the co-domain N is the image of $2r - 1$ in the domain N . Thus, f is onto.

Example 2: Show that a one-one function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ must be onto.

Solution: Since f is one-one, three elements of $\{1, 2, 3\}$ must be taken to 3 different elements of the co-domain $\{1, 2, 3\}$ under f . Hence, f has to be onto.

COMPETENCY BASED SOLVED EXAMPLES

Multiple Choice Questions

(1 M)

1. Let $f: R \rightarrow R$ be defined by $f(x) = \frac{1}{x} \forall x \in R$. Then f is

- (a) one-one
- (b) onto
- (c) bijective
- (d) f is not defined

(Un) (NCERT Exemplar)

Sol. We have, $f(x) = \frac{1}{x}, \forall x \in R$

For $x = 0$, $f(x)$ is not defined.

Hence, $f(x)$ is a not defined function.

2. Let $X = \{x^2 : x \in N\}$ and the function $f: N \rightarrow X$ is defined by $f(x) = x^2, x \in N$. Then this function is

(An) (CBSE 2022, Term-I)

- (a) injective only
- (b) not bijective
- (c) surjective only
- (d) bijective

Sol. Let $x_1, x_2 \in N$

$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1^2 - x_2^2 = 0$$

$$\Rightarrow (x_1 + x_2)(x_1 - x_2) = 0 \Rightarrow x_1 = x_2 \{x_1 + x_2 \neq 0 \text{ as } x_1, x_2 \in N\}$$

Hence, $f(x)$ is injective.

Also, the elements like 2 and 3 have no pre-image in N . Thus, $f(x)$ is not surjective.

3. Let $f: [2, \infty) \rightarrow R$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is (Ev) (NCERT Exemplar)

- (a) R
- (b) $[1, \infty)$
- (c) $[4, \infty)$
- (d) $[5, \infty)$

Sol. Given that, $f(x) = x^2 - 4x + 5$

$$\text{Let } y = x^2 - 4x + 5 \Rightarrow y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$$

$$\Rightarrow (x - 2)^2 = y - 1 \Rightarrow x - 2 = \sqrt{y - 1} \Rightarrow x = 2 + \sqrt{y - 1}$$

$$\therefore y - 1 \geq 0, y \geq 1$$

$$\text{Range} = [1, \infty]$$

4. Let $f: R \rightarrow R$ be defined as $f(x) = x^4$. Choose the correct answer. (Ap) (NCERT Intext)

- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.

Sol. A function $f: X \rightarrow Y$ is called an onto function if the range of f is Y .

In other words, if each $y \in Y$ there exists at least one $x \in X$ such that $f(X) = Y$,

then f is an onto function.

$f: R \rightarrow R$ defined as $f(x) = x^4$

$x, y \in R$ such that $f(x) = f(y)$

$$\Rightarrow x^4 = y^4 \Rightarrow x = \pm y$$

Therefore,

$f(x) = f(y)$ does not imply that $x = y$.

For example $f(1) = f(-1) = 1 \Rightarrow f$ is not one-one.

Consider an element 2 in codomain R there does not exist any x in domain R such that

$$f(x) = 2.$$

Therefore, f is not onto.

Function f is neither one-one nor onto.

Mistakes 101 : What not to do!

Students might forget to differentiate between one-one (injective) and onto (surjective) properties or overlook negative values in the range.

Key Takeaways

- One-One (Injective): Each element of the domain maps to a unique element in the codomain.
- Onto (Surjective): Every element of the codomain is mapped by some element of the domain.

5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be the $B \rightarrow C$ be the bijective functions. Then $(g \circ f)^{-1}$ is (Ap) (NCERT Exemplar)

- (a) $f^{-1} \circ g^{-1}$
- (b) $f \circ g$
- (c) $g^{-1} \circ f^{-1}$
- (d) $g \circ f$

Sol. Given that, $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions.

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$

(As composition of functions is associative)

$$= (f^{-1} \circ I_B \circ f) \quad (\text{where } I_B \text{ is identity function on } B)$$

$$= (f^{-1} \circ I_B) \circ f = f^{-1} \circ f = I_A$$

Thus $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

6. Let $f: [3, \infty) \rightarrow R$ be the function defined by $f(x) = x^2 - 6x + 10$, then the range of f is (Ap) (NCERT Exemplar)

- (a) R
- (b) $[1, \infty)$
- (c) $[4, \infty)$
- (d) $[5, \infty)$

Sol. Given that, $f(x) = x^2 - 6x + 10$

$$\text{Let } y = x^2 - 6x + 10$$

$$y = x^2 - 6x + 9 + 1 = (x - 3)^2 + 1$$

$$(x - 3)^2 = y - 1 \Rightarrow x - 3 = \sqrt{y - 1} \Rightarrow x = 3 + \sqrt{y - 1}$$

$$\therefore y - 1 \geq 0, y \geq 1$$

$$\text{Range} = [1, \infty)$$

7. Let $f: R \rightarrow R$ be defined as $f(x) = x^3$. Choose the correct answer (Ev)

- (a) f is one-one and onto
- (b) f is many one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.

Sol. $f(a) = f(b) \Rightarrow a^3 = b^3 \Rightarrow a = b$ (Injective or one-one)

$$f(x) = y \Rightarrow x^3 = y \Rightarrow x = (y)^{1/3}$$

For any $y \in R$, $(y)^{1/3}$ is real.

Hence x^3 is onto.

8. The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is (Cr)

- (a) $(-3, -1) \cup (1, \infty)$
- (b) $[-3, -1) \cup [1, \infty)$
- (c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$
- (d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$

Sol. Given function is $f(x) = \log_{3+x}(x^2 - 1)$

It is obvious that $f(x)$ is defined when $x^2 - 1 > 0$, $3 + x > 0$ and $3 + x \neq 1$.

Now, $x^2 - 1 > 0 \Rightarrow x^2 > 1$

$x < -1$ or $x > 1$

$3 + x > 0 \Rightarrow x > -3$

$3 + x \neq 1 \Rightarrow x \neq -2$

Therefore, domain of the function $f(x) = (-3, -2) \cup (-2, -1) \cup (1, \infty)$

Answer Key

(a) 5	(b) 8	(c) 7	(d) 6
(a) 4	(b) 3	(c) 2	(d) 1

Assertion and Reason

(1 M)

Direction: The following questions consist of two statements – Assertion (A) and Reason (R). Answer these questions by selecting the appropriate option given below:

- (a) Both A and R are true, and R is the correct explanation of A.
- (b) Both A and R are true, but R is not the correct explanation of A.
- (c) A is true, but R is false
- (d) A is false, but R is true.

1. Assertion (A): Let $f(x) = x^2$, $g(x) = \cos x$. Then $fog \neq gof$

Reason (R): $(fog)(x) = f(x)g(x)$ (An)

Sol. We have, $f(x) = x^2$, $g(x) = \cos x$

$$fog(x) = f(g(x)) = f(\cos x) = (\cos x)^2$$

$$gof(x) = g(f(x)) = g(x^2) = \cos x^2$$

$$fog \neq gof$$

Hence, Assertion is true.

Reason (R): Given, $fog(x) = f(x)g(x)$

Reason is false because we know $fog(x) = f(g(x))$

2. Consider the function $f: R \rightarrow R$ defined as $f(x) = \frac{x}{1+x^2}$

Assertion (A): $f(x)$ is not one-one.

Reason (R): $f(x)$ is not onto (Ap)

Sol. Given, $f: R \rightarrow R$;

$$f(x) = \frac{x}{1+x^2}$$

$$\text{Taking } x_1 = 4, x_2 = \frac{1}{4} \in R$$

$$f(x_1) = f(4) = \frac{4}{17}$$

$$f(x_2) = f\left(\frac{1}{4}\right) = \frac{4}{17} \quad (x_1 \neq x_2) \quad (x_1 \neq x_2)$$

$\therefore f$ is not one-one.

A is true.

Let $y \in R$ (co-domain)

$$f(x) = y$$

$$\Rightarrow \frac{x}{1+x^2} = y \Rightarrow y(1+x^2) = x \Rightarrow yx^2 + y - x = 0$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1-4y^2}}{2y}$$

since, $x \in R$

$$\therefore 1-4y^2 \geq 0$$

$$\Rightarrow -\frac{1}{2} \leq y \leq \frac{1}{2}$$

So Range (f) $\neq R$ (Co-domain)

$\therefore f$ is not onto.

R is true.

R is not the correct explanation for A.

3. Assertion (A): The function $f(x) = x^2$ is one-to-one (injective).

Reason (R): If $f(a) = f(b)$ for $f(x) = x^2$, then $a = b$ or $a = -b$ (Ev)

Sol. The function $f(x) = x^2$ is not injective because different inputs can yield the same output (e.g., $f(2) = 4$ and $f(-2) = 4$).

The reason correctly identifies that $f(a) = f(b)$ implies $a = b$ or $a = -b$.

Answer Key

(p) 3	(q) 2	(r) 1
-------	-------	-------

Subjective Questions

Very Short Answer Type Questions (1 or 2 M)

1. Let $A \in [-1, 1]$. Then discuss whether $h(x) = x|x|$ functions defined on A are one-one, onto or bijective. (An)

Sol. $h(x) = x|x|$

$$\text{Let } h(x_1) = h(x_2)$$

$$\Rightarrow h(x_1) = h(x_2) \Rightarrow x_1|x_1| = x_2|x_2|$$

If $x_1, x_2 > 0$
 $\Rightarrow (x_1 - x_2)(x_1 + x_2) = 0$ (1/2 M)
 $\Rightarrow x_1 = x_2$ (as $x_1 + x_2 \neq 0$)

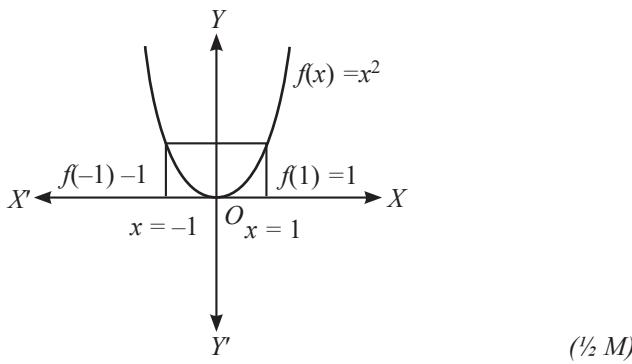
Similarly for $x_1, x_2 < 0$ we get $x_1 = x_2$

Clearly for x_1 and x_2 of opposite sign,
 $x_1 \neq x_2$

Thus, $f(x)$ is one-one. (1/2 M)
For $x \in [0, 1], f(x) = x^2 \in [0, 1]$
For $x < 0, f(x) = -x^2 \in [-1, 0]$
Thus range is $[-1, 1]$
So, $(x(x))$ is onto.
Hence $h(x)$ is bijective. (1 M)

2. Show that the function $f: R \rightarrow R$, defined as $f(x) = x^2$, is neither one-one nor onto. (Un) (NCERT Intext)

Sol. Since $f(-1) = 1 = f(1)$, f is not one-one. Also, the element -2 in the co-domain R is not image of any element x in the domain R . Therefore f is not onto. (1 M)



The image of 1 and -1 under f is 1 . (1/2 M)

3. Check whether the function $y = \frac{x}{1+|x|}$, $x \in R, y \in R$ is one-one and onto. (Un)

Sol. Let $f(x) = y = \frac{x}{1+|x|} \forall x \in R, y \in R$
 $\therefore f(x) = \frac{x}{1+x}$ or $\frac{x}{1-x}$ is one-one. (1/2 M)
Here range of $f(x)$ is $R - \{-1, 1\}$. (1/2 M)
But y can not have any of the values $-1, 1$ for some x .
 $\therefore f(x)$ is not an onto function. (1 M)

4. Let the function $f: R \rightarrow R$ be defined by $f(x) = \cos x, \forall x \in R$. Show that f is neither one-one nor onto. (An)

Sol. Given function, $f(x) = \cos x, \forall x \in R$
Now, $f\left(\frac{\pi}{2}\right) = \cos \frac{\pi}{2} = 0$
 $\Rightarrow f\left(\frac{-\pi}{2}\right) = \cos \frac{\pi}{2} = 0 \Rightarrow f\left(\frac{\pi}{2}\right) = f\left(\frac{-\pi}{2}\right)$
But $\frac{\pi}{2} \neq \frac{-\pi}{2}$ (1 M)
So, $f(x)$ is not one-one.

Now, $f(x) = \cos x, \forall x \in R$ is not onto as there is no pre-image for any real number. Which does not belong to the intervals $[-1, 1]$, the range of $\cos x$. (1 M)

5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.

(i) If f is not one-one, can gof be one-one?
(ii) If f is not onto, can gof be onto?

Justify your answer. (Un) (CBSE CFPQ, 2024)

Sol. (i) Writes that gof cannot be one-one, since gof is one-one implies f is one-one. (1 M)
(ii) Writes that gof can be onto, since gof is onto implies g is onto and there is no restriction on f to be one-one or onto. (1 M)

Nailing the Right Answer

Students should remember that the composition of functions depends on the properties of both f and g .

Key Takeaways

For gof to be one-one, both f and g must be one-one; for onto, only g needs to be onto.

Short Answer Type Questions

(2 or 3 M)

1. Show that an onto function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ is always one-one. (Ap) (NCERT Intext)

Sol. Suppose f is not one-one. Then there exists two elements, say 1 and 2 in the domain whose image in the co-domain is same. Also, the image of 3 under f can be only one element. (1/2 M)
Therefore, the range set can have at the most two elements of the co-domain $\{1, 2, 3\}$, showing that is not onto, a contradiction. Hence, f must be one-one. (1/2 M)

2. Graph of a certain function $f: R \rightarrow R$ is a straight line parallel to x -axis, where R is the set of real numbers.

(i) Is the function one-one?
(ii) Is the function onto?

Justify your answer. (Ap) (NCERT Intext)

Sol. (i) Writes that the function must be of the form $f(x) = k$, where ' k ' is a real number. (1 M)
Writes that f is not one-one.

Justifies by giving an example as follows:

$f(1) = k = f(2)$, but $1 \neq 2$. (1 M)

(ii) Writes that f is not onto.

Justifies by giving an example as follows:

Consider $\beta (\neq k) \in R$ (co-domain) there is no element $x \in R$ (domain) such that $f(x) = \beta$. (1 M)

Nailing the Right Answer

Students should remember that a horizontal line function is neither one-one nor onto. They should check specific values to prove both properties.

3. f and g are real functions such that f is bijective and $g(x) = 3x + 4$, for all $x \in R$.

Is (gof) invertible? justify your answer.

(Un) (CBSE CFPQ, 2024)

Sol. Writes that $g(x)$ is one-one as:

$$g(x_1) = g(x_2)$$

$$3x_1 + 4 = 3x_2 + 4 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2. \quad (1 M)$$

Writes that for any real value of y in R , there exists $y - 4/3$ in R such that:

$$g(y - 4/3) = 3 \times y - 4 + 4 = y - 4 + 4 = 2$$

Thus, $g(x)$ is onto.

Concludes that $g(x)$ is bijective therefore invertible. (1 M)

Writes that $f(x)$ is bijective and therefore invertible.

Uses the theorem that if f and g are invertible, then (gof) is also invertible it conclude that (gof) is invertible. (1 M)

Long Answer Type Questions

(4 or 5 M)

1. Show that the function $f: R - \{3\} \rightarrow R - \{1\}$, given by

$$f(x) = \frac{x-2}{x-3} \text{ is a bijection.} \quad (\text{Cr})$$

Sol. Given, $A = R - \{3\}$, $B = R - \{1\}$

$$f: A \rightarrow B \text{ is defined as } f(x) = \left(\frac{x-2}{x-3} \right).$$

Let $x, y \in A$ such that $f(x) = f(y)$.

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3} \quad (1 M)$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow -3x - 2y = -3y - 2x \Rightarrow 3x - 2x = 3y - 2y$$

$$\Rightarrow x = y$$

Therefore, f is one-one. (1 M)

Let $y \in B = R - \{1\}$

Then, $y \neq 1$.

The function f is onto if there exists $x \in A$ such that $f(x) = y$.

Now, $f(x) = y$

$$\Rightarrow \frac{x-2}{x-3} = y \Rightarrow x - 2 = xy - 3y$$

$$\Rightarrow x(1-y) = -3y + 2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A \quad (y \neq 1) \quad (1 M)$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y \quad (1 M)$$

$\therefore f$ is onto.

Hence, function f is one-one and onto. (1 M)

Mistakes 101 : What not to do!

Students might forget to check one-one and onto properties or make mistakes with domain and range exclusions.

2. Show that the function $f: \mathbb{R} \rightarrow \{x \in \mathbb{R} : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in \mathbb{R}$ is one-one and onto function. (Un) (CBSE SQP, 2023)

$$\text{Sol. We have, } f(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x \geq 0 \\ \frac{x}{1-x}, & \text{if } x < 0 \end{cases}$$

Now, we consider the following cases

Case I: when $x \geq 0$, we have $f(x) = \frac{x}{1+x}$

Injectivity: let $x, y \in \mathbb{R}^+ \cup \{0\}$ such that $f(x) = f(y)$, then

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y} \Rightarrow x + xy = y + xy \Rightarrow x = y$$

So, f is injective function. (1 M)

Surjectivity: when $x \geq 0$, we have $f(x) = \frac{x}{1+x} \geq 0$ and $f(x)$

$$= 1 - \frac{1}{1+x} < 1, \text{ as } x \geq 0$$

Let $y \in [0, 1)$, thus for each $y \in [0, 1)$ there exists $x = \frac{y}{1-y}$

$$\geq 0 \text{ such that } f(x) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = y$$

So, f is onto function on $[0, \infty)$ to $[0, 1)$. (1 M)

Case II: when $x < 0$, we have $f(x) = \frac{x}{1-x}$

Injectivity: Let $x, y \in \mathbb{R}^-$ i.e., $x, y < 0$, such that $f(x) = f(y)$, then

$$\Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - xy \Rightarrow x = y$$

So, f is injective function. (1 M)

Surjectivity: $x < 0$, we have $f(x) = \frac{x}{1-x} < 0$ also,

$$f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x} > -1$$

$$\Rightarrow -1 < f(x) < 0$$

Let $y \in (-1, 0)$ be an arbitrary real number and there exists

$$x = \frac{y}{1-y} < 0 \text{ such that,}$$

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = y$$

So, for $y \in (-1, 0)$, there exists $x = \frac{y}{1+y} < 0$ such that

$$f(x) = y.$$

Hence, f is onto function on $(-\infty, 0)$ to $(-1, 0)$. (1 M)

Case III:

Injectivity: Let $x > 0$ and $y < 0$ such that $f(x) = f(y)$

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1-y}$$

$\Rightarrow x - xy = y + xy \Rightarrow x - y = 2xy$, here LHS > 0 but RHS < 0 , which is inadmissible.

Hence, $f(x) \neq f(y)$ when $x \neq y$.

Hence f is one-one and onto function. (1 M)

3. If $f: R \rightarrow R$ is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection (Un)

Sol. **Injectivity:** To prove that f is injective, we need to show that if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Let $f(x_1) = f(x_2)$:

$$\Rightarrow 4x_1^3 + 7 = 4x_2^3 + 7 \quad (1 M)$$

$$\Rightarrow 4x_1^3 = 4x_2^3 \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$$

Thus, f is injective (1 M)

Surjectivity

Let $y \in \mathbb{R}$. We need to find x such that: $f(x) = y$

$$\Rightarrow 4x^3 + 7 = y$$

$$\Rightarrow 4x^3 = y - 7$$

$$\Rightarrow x^3 = \frac{y-7}{4}$$

$$\Rightarrow x = \sqrt[3]{\frac{y-7}{4}} \quad (1 M)$$

Since y is any real number, $x = \sqrt[3]{\frac{y-7}{4}}$ is a real number because the cube root of any real number is real. Thus, for every $y \in \mathbb{R}$, there exists an $y \in \mathbb{R}$ such that $f(x) = y$

Therefore, f is surjective. (1 M)

MISCELLANEOUS EXERCISE

Multiple Choice Questions

(1 M)

- The maximum number of equivalence relations on the set $A = \{1, 2\}$ are (NCERT Exemplar)
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 5
- Let R be the relation in the set \mathbb{N} given by $R = \{(a, b): a = b - 4, b > 6\}$. Choose the correct answer. (NCERT Intext)
 - (a) $(2, 4) \in R$
 - (b) $(3, 8) \in R$
 - (c) $(4, 8) \in R$
 - (d) $(8, 7) \in R$
- A function $f: R \rightarrow R$ defined by $f(x) = 2 + x^2$ is (CBSE 2022, Term-1)
 - (a) not one-one
 - (b) one-one
 - (c) not onto
 - (d) neither one-one nor onto
- If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is (NCERT Exemplar)
 - (a) reflexive
 - (b) transitive
 - (c) symmetric
 - (d) none of these

- Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{2x-1}{2}$ and $g: \mathbb{Q} \rightarrow \mathbb{R}$ be another function defined by $g(x) = x + 2$. Then (g of) $\frac{3}{2}$ is (NCERT Exemplar)
 - (a) 1
 - (b) 1
 - (c) $\frac{7}{2}$
 - (d) none of these

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x) = 3x$. Choose the correct answer. (NCERT Intext)
 - (a) f is one-one onto
 - (b) f is many-one onto
 - (c) f is one-one but not onto
 - (d) f is neither one-one nor onto.
- Let $A = \{3, 5\}$. Then number of reflexive relations on A is
 - (a) 2
 - (b) 4
 - (c) 0
 - (d) 8

Case Based-IV

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1, 2, 3, 4, 5, 6\}$. Let A be the set of players while B be the set of all possible outcomes.

[CBSE QB]

$$A = \{S, D\}, B = \{1, 2, 3, 4, 5, 6\}$$

(i) Let $R : B \rightarrow B$ be defined by $R = \{(x, y) : y \text{ is divisible by } x\}$. Verify that whether R is reflexive, symmetric and transitive.

(ii) Raji wants to know the number of functions from A to B . Find the number of all possible functions.

(iii) Let R be a relation on B defined by $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$ Then R is which kind of relation?

OR

Raji wants to know the number of relations possible from A to B . Find the number of possible relations.

Case Based-V

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line $y = x - 4$. Let L be the set of all lines which are parallel on the ground and R be a relation on L .

[CBSE QB]

(i) Let relation R be defined by $R = \{(L_1, L_2) : L_1 \parallel L_2 \text{ where } L_1, L_2 \in L\}$. What is the type of relation R ?

(ii) Let $R = \{(L_1, L_2) : L_1 \perp L_2 \text{ where } L_1, L_2 \in L\}$. What is the type of relation R ?

(iii) Check whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x + 4$ is bijective or not.

OR

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = x + 4$. Find the range of $f(x)$.

ANSWER KEYS

Multiple Choice Questions

1. (c) 2. (c) 3. (d) 4. (d) 5. (d) 6. (a) 7. (b) 8. (a) 9. (b) 10. (d)
11. (c)

Assertion and Reason

1. (c) 2. (d) 3. (a) 4. (b) 5. (c)

HINTS & EXPLANATIONS

Multiple Choice Questions

1. (c) Determine the possible partitions of the set $A = \{1, 2\}$ into equivalence classes:

- All elements in one class: $\{\{1, 2\}\}$
- Each element in its own class: $\{\{1\}, \{2\}\}$

Count the number of distinct partitions:

- One equivalence class: 1 way
- Two equivalence classes: 2 ways (as listed above)

Add up the counts: $1 + 2 = 3$.

Therefore, the maximum number of equivalence relations on the set $A = \{1, 2\}$ is 3.

2. (c) $R = \{(a, b) : a = b - 4, b > 6\}$

Now, since $b > 6, (2, 4) \notin R$

Also, as $3 \neq 8 - 4, (3, 8) \notin R$

And, as $8 \neq 7 - 4, (8, 7) \notin R$

Now, consider $(6, 8)$. We have $8 > 4$ and also, $4 = 8 - 4$.

$\therefore (4, 8) \in R$

MOCK TEST-2

Time allowed : 3 hours

Maximum Marks : 80

GENERAL INSTRUCTIONS:

- (i) This question paper contains 38 questions. All question are **compulsory**.
- (ii) This question paper is divided into **five** sections - **A, B, C, D and E**
- (iii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (iv) Use of calculators is **not** allowed.

SECTION - A

This section comprises multiple choice questions (MCQs) of 1 mark each.

1. If $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, $n \in N$, then A^6 equals
 - (a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
2. $\int \frac{x^9}{(4x^2+1)^6} dx$ is equal to:
 - (a) $\frac{1}{5x} \left(4 + \frac{1}{x^2}\right)^{-5} + c$
 - (b) $\frac{1}{5} \left(4 + \frac{1}{x^2}\right)^{-5} + c$
 - (c) $\frac{1}{10x} \left(4 + \frac{1}{x^2}\right)^{-5} + c$
 - (d) $\frac{1}{10} \left(4 + \frac{1}{x^2}\right)^{-5} + c$
3. Area bounded by the curve $y = \log x$, x-axis and the ordinates $x = 1, x = 2$ is
 - (a) $\log 4$ sq. units
 - (b) $(\log 4 + 1)$ sq. units
 - (c) $(\log 4 - 1)$ sq. units
 - (d) None of these
4. If $x^p y^p = (x + y)^{p+q}$, then $\frac{dy}{dx} =$
 - (a) $\frac{x}{y}$
 - (b) $\frac{y}{x}$
 - (c) $\frac{x}{x+y}$
 - (d) $\frac{y}{y+x}$
5. The value of $\int_0^1 \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ is:
 - (a) 1
 - (b) 0
 - (c) -1
 - (d) $\frac{\pi}{4}$
6. The solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is
 - (a) $1 + xy + c(y + x) = 0$
 - (b) $x + y = c(1 - xy)$
 - (c) $y - x = c(1 + xy)$
 - (d) $1 + xy = c(x + y)$
7. The value of the objective function is maximum under linear constraints
 - (a) At the centre of feasible region
 - (b) At $(0, 0)$
 - (c) At any vertex of feasible region
 - (d) The vertex which is at maximum distance from $(0, 0)$

8. The image of $(1, 6, 3)$ in the line $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ is:

(a) $(0, 5, 1)$ (b) $(1, 0, 7)$ (c) $(5, 2, 1)$ (d) $(3, 2, 1)$

9. $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx =$

(a) $\frac{\pi^2}{8}$ (b) $\frac{\pi^2}{16}$ (c) $\frac{\pi^2}{4}$ (d) $\frac{\pi^2}{32}$

10. If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of $|\text{adj } A|$, is

(a) a^9 (b) a^{27} (c) a^6 (d) a^2

11. The corner points of the feasible region determined by the system of linear constraints are: $(20, 160), (40, 80), (20, 280)$. Let $Z = lx + my$, where $l, m > 0$. Condition on l on m , so that the maximum Z occurs at two points $(20, 160)$ and $(40, 80)$ is:

(a) $l = m$ (b) $3l = 4m$ (c) $l = 4m$ (d) $3l = m$

12. The vectors $\hat{i} + 2\hat{j} + 3\hat{k}$, $\lambda\hat{i} + 4\hat{j} + 7\hat{k}$, $-3\hat{i} - 2\hat{j} - 5\hat{k}$ are collinear, if λ equals

(a) 3 (b) 4 (c) 5 (d) 6

13. If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$, then x is equal to

(a) -6 (b) ± 6 (c) 6 (d) 0

14. There are two children in a family. The probability that both of them are boys is

(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) None of these

15. The degree of the differential equation $\frac{d^2y}{dx^2} - \sqrt{\frac{dy}{dx} - 3} = x$ is

(a) 2 (b) 1 (c) $\frac{1}{2}$ (d) 3

16. If \vec{a} is any vector in space, then

(a) $\vec{a} = (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k}$ (b) $\vec{a} = (\vec{a} \times \hat{i}) + (\vec{a} \times \hat{j}) + (\vec{a} \times \hat{k})$
 (c) $\vec{a} = \hat{j}(\vec{a} \cdot \hat{i}) + \hat{k}(\vec{a} \cdot \hat{j}) + \hat{i}(\vec{a} \cdot \hat{k})$ (d) $\vec{a} = (\vec{a} \times \hat{i}) \times \hat{i} + (\vec{a} \times \hat{j}) \times \hat{j} + (\vec{a} \times \hat{k}) \times \hat{k}$

17. The number of points at which the function $f(x) = \frac{1}{x - [x]}$ is not continuous are

(a) 1 (b) 2 (c) 3 (d) For every integer

18. The direction ratios of the perpendicular to the lines $\frac{x-7}{2} = \frac{y+17}{-3} = \frac{z-6}{1}$ and $\frac{x+5}{1} = \frac{y+3}{2} = \frac{z-4}{-2}$ are proportional to

(a) 4, 5, 7 (b) 4, -5, 7 (c) 4, -5, -7 (d) -4, 5, 7

DIRECTIONS: In the question number 19 and 20, a statement of **Assertion (A)** is followed by a statement of **Reason (R)**. Choose the correct option out of the following:

(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
 (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
 (c) Assertion (A) is true but Reason (R) is false.
 (d) Assertion (A) is false but Reason (R) is true.

2026
EXAMINATION

CBSE QUESTION & CONCEPT BANK

Chapter-wise & Topic-wise

CLASS 12

**Chapter-wise
CONCEPT MAPS**

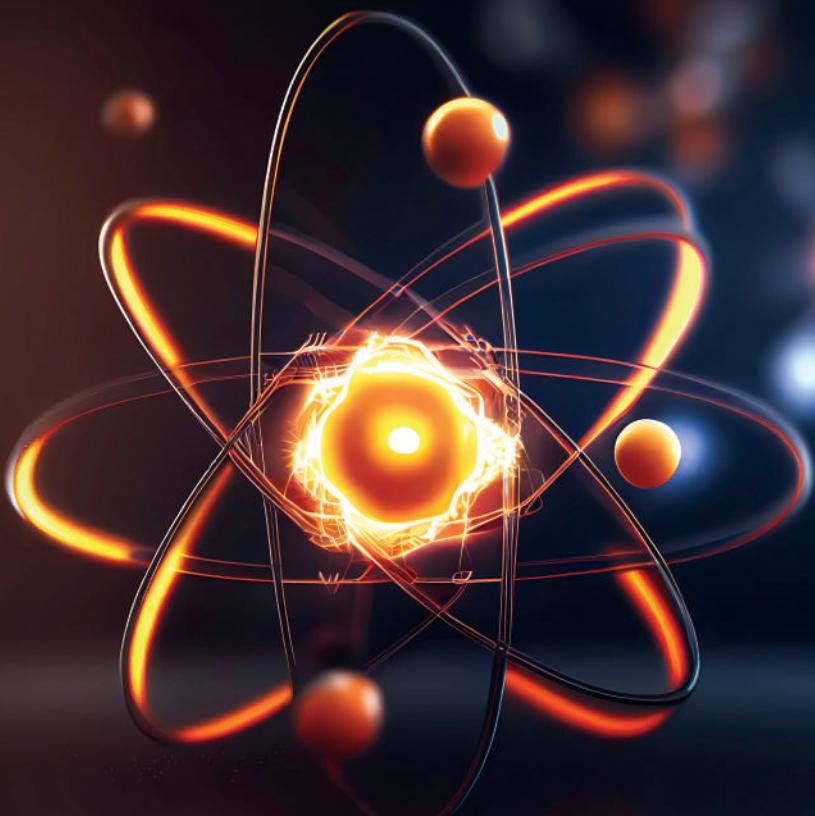
**Important Questions with Detailed Explanations
NCERT & EXEMPLAR**

**Handpicked & High yield from Past 10 Years
PYQs**

**Revision Blue Print & Solved Questions
COMPETENCY FOCUSED**

**CBSE 2025 Past Year & SQP Solved Papers
LATEST CBSE PAPERS**

**As per Latest Pattern
MOCK TESTS**



PHYSICS

CONTENTS

Questions have been categorized according to the Bloom's Taxonomy (as per CBSE Board).

The following abbreviations have been used in the book:

(Un) - Understanding

(Re) - Remembering

(Ap) - Applying

(An) - Analysing

(Cr) - Creating

(Ev) - Evaluating

Upcoming CBSE SQPs/
APQs can be accessed
through this QR

CBSE SOLVED Paper 2025	i-xx
CBSE SOLVED Paper 2024	1-25

1. Electric Charges and Fields	27-57	8. Electromagnetic Waves	249-268
1. Introduction to Electric Charges and Coulomb's Law	29-35	1. Displacement Current and Electromagnetic Waves	251-256
2. Electric Field, Electric Field Lines and Electric Dipole	36-42	2. Electromagnetic Spectrum	257-263
3. Continuous Charge Distribution and Gauss's Law	43-50	9. Ray Optics and Optical Instruments	269-311
2. Electrostatic Potential and Capacitance	58-96	1. Reflection of Light by Spherical Mirrors	272-279
1. Electrostatic Potential	60-67	2. Refraction and Total Internal Reflection	280-291
2. Equipotential Surfaces and Potential Energy	68-75	3. Refraction Through a Prism and Optical Instruments	292-300
3. Dielectric and Capacitors	76-85	10. Wave Optics	312-345
3. Current Electricity	97-130	1. Huygens Principle and Refraction/Reflection	314-320
1. Electric Current, Drift Velocity and Ohm's Law	99-106	2. Interference and Young's Experiment	321-326
2. EMF and Combination of Cells	107-114	3. Diffraction and Polarisation	327-334
3. Kirchhoff's Law and Wheatstone Bridge	115-121	11. Dual Nature of Radiation and Matter	346-369
4. Moving Charges and Magnetism	131-166	1. Fundamentals of Electron Emission and Photoelectric Effect	348-355
1. Dynamics of Magnetic Interactions: From Forces to Fields	133-139	2. Particle-Wave Duality and Einstein's Photoelectric Equation	356-364
2. Circular Current and Magnetic Fields: Exploring Loops and Solenoid	140-148	12. Atoms	370-393
3. Fundamentals of Electromagnetic Interactions: Current, Torque and Measurement	149-160	1. Alpha-Particle Scattering and Rutherford's Nuclear Model	372-376
5. Magnetism and Matter	167-188	2. Atomic Spectra and de-Broglie's Explanation	377-386
1. The Bar Magnet, Magnetism and Gauss's Law	169-176	13. Nuclei	394-413
2. Magnetization: Intensity and Material Properties	177-182	1. Properties of Nucleus	396-400
6. Electromagnetic Induction	189-215	2. Binding Energy and Nuclear Reaction (Fusion and Fission)	401-408
1. Faraday's Law and Lenz's Law	191-199	14. Semiconductor Electronics: Materials, Devices and Simple Circuits	414-440
2. Motional Emf, Mutual and Self-Inductance, and AC Generators	200-208	1. Classification of Metals, Conductors and Semiconductors	417-423
7. Alternating Current	216-248	2. <i>p-n</i> Junction, Semiconductor Diode and Application of Junction Diode as a Rectifier	424-430
1. AC Voltage Applied to a Resistor, Phasors	218-223		
2. AC Voltage Applied to an Inductor and Capacitor	224-230		
3. Series LCR Circuit, the Power Factor, Transformers	231-241		

2026
EXAMINATION

CBSE QUESTION & CONCEPT BANK

Chapter-wise & Topic-wise

CLASS 12

**Chapter-wise
CONCEPT MAPS**

**Important Questions with Detailed Explanations
NCERT & EXEMPLAR**

**Handpicked & High yield from Past 10 Years
PYQs**

**Revision Blue Print & Solved Questions
COMPETENCY FOCUSED**

**CBSE 2025 Past Year & SQP Solved Papers
LATEST CBSE PAPERS**

**As per Latest Pattern
MOCK TESTS**

CHEMISTRY

CONTENTS

Upcoming CBSE SQPs/
APQs can be accessed
through this QR

Questions have been categorized according to the Bloom's Taxonomy (as per CBSE Board).

The following abbreviations have been used in the book:

(*Un*) - Understanding (*Re*) - Remembering (*Ap*) - Applying
 (*An*) - Analysing (*Cr*) - Creating (*Ev*) - Evaluating

CBSE SOLVED Paper 2025

i-xii

CBSE SOLVED Paper 2024

1-18

1. Solutions

1. Types of Solutions and Expressing Concentration of Solutions
2. Solubility
3. Vapour Pressure of Liquid Solutions & Ideal and Non-Ideal Solutions
4. Colligative Properties of Solutions and Abnormal Molar Mass

19-56

22-27
28-32
33-38
39-45

2. Nomenclature and Isomerism in Coordination Compounds

164-170

3. Bonding in Coordination Compounds and Metal Carbonyls & Importance of Coordination Compounds

171-177

2. Electrochemistry

1. Electrochemical Cells, Galvanic Cells and Nernst Equation
2. Conductance of Electrolytic Solutions, Electrolytic Cells and Electrolysis
3. Batteries, Fuel Cells and Corrosion

57-91

60-66
67-74
75-79

6. Haloalkanes and Haloarenes

190-229

1. Nomenclature, Preparation and Physical Properties of Haloalkanes and Haloarenes
2. Chemical Properties of Haloalkanes
3. Chemical Properties of Haloarenes and Polyhalogen Compounds

193-200

201-209

210-216

3. Chemical Kinetics

1. Rate of Chemical Reaction and Factors Influencing It
2. Integrated Rate Equations, Half Life and Pseudo First order Reaction
3. Temperature Dependence of Rate of Reaction and Collision Theory

92-124

94-100
101-106
107-113

7. Alcohols, Phenols and Ethers

230-271

1. Alcohols
2. Phenols
3. Ethers

234-243

244-252

253-258

4. The d-and f-Block Elements

1. The Transition Elements (d-Block), General Properties of the Transition Elements (d-Block)
2. Some Important Compounds of Transition Elements
3. The Inner Transition Elements (f-Block), the Lanthanoids, the Actinoids, Some Applications of d- and f- Block Elements

125-155

127-133
134-138
139-144

8. Aldehydes, Ketones and Carboxylic Acids

272-314

1. Nomenclature, Preparation and Physical Properties of Aldehydes and Ketones
2. Chemical Properties of Aldehydes and Ketones
3. Nomenclature, Preparation and Physical and Chemical Properties of Carboxylic Acids

275-281

282-292

293-301

5. Coordination Compounds

1. Werner's Theory and Definitions of Some Important Terms of Coordination Compounds

156-189

159-163

9. Amines

315-355

1. Nomenclature, Preparation and Basic Properties of Amines
2. Chemical Properties of Amines
3. Preparation and Physical & Chemical Properties of Diazonium Salts

318-325

326-332

333-340

10. Biomolecules

356-398

1. Carbohydrates
2. Proteins
3. Enzymes and Vitamins
4. Nucleic Acids and Hormones

358-366

367-373

374-378

379-386

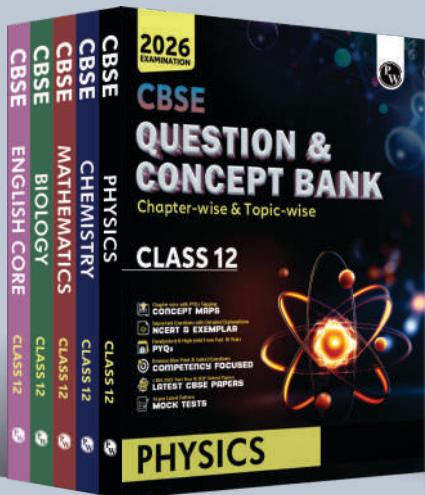
Mock Test-1

401-404

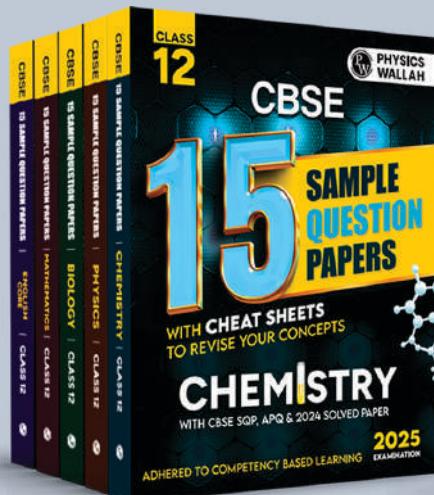
Mock Test-2

405-408

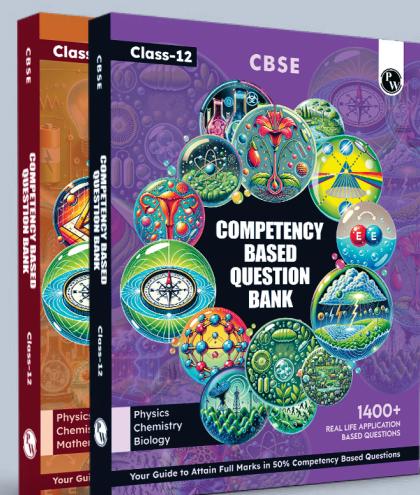
Other Helpful Books



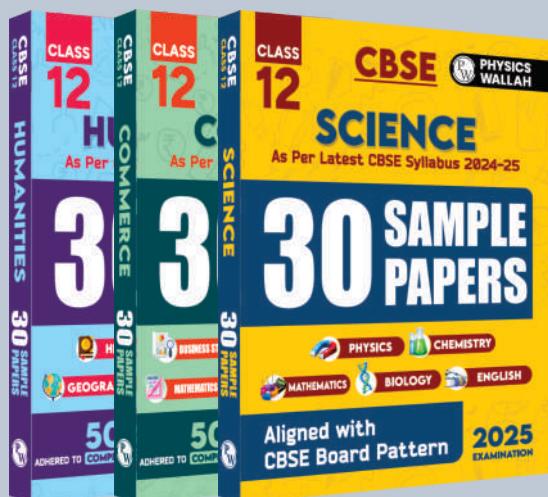
CBSE QUESTION & CONCEPT BANK



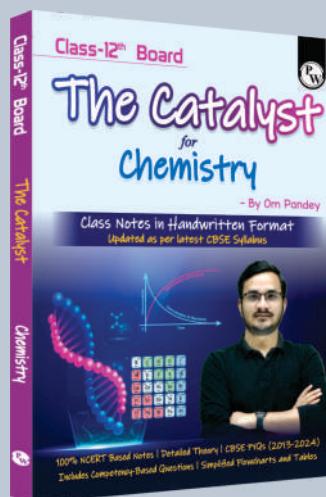
CBSE 15 SAMPLE QUESTION PAPERS



COMPETENCY BASED QUESTION BANK



COMBINED 30 SAMPLE PAPERS



THE CATALYST

