

CLASS

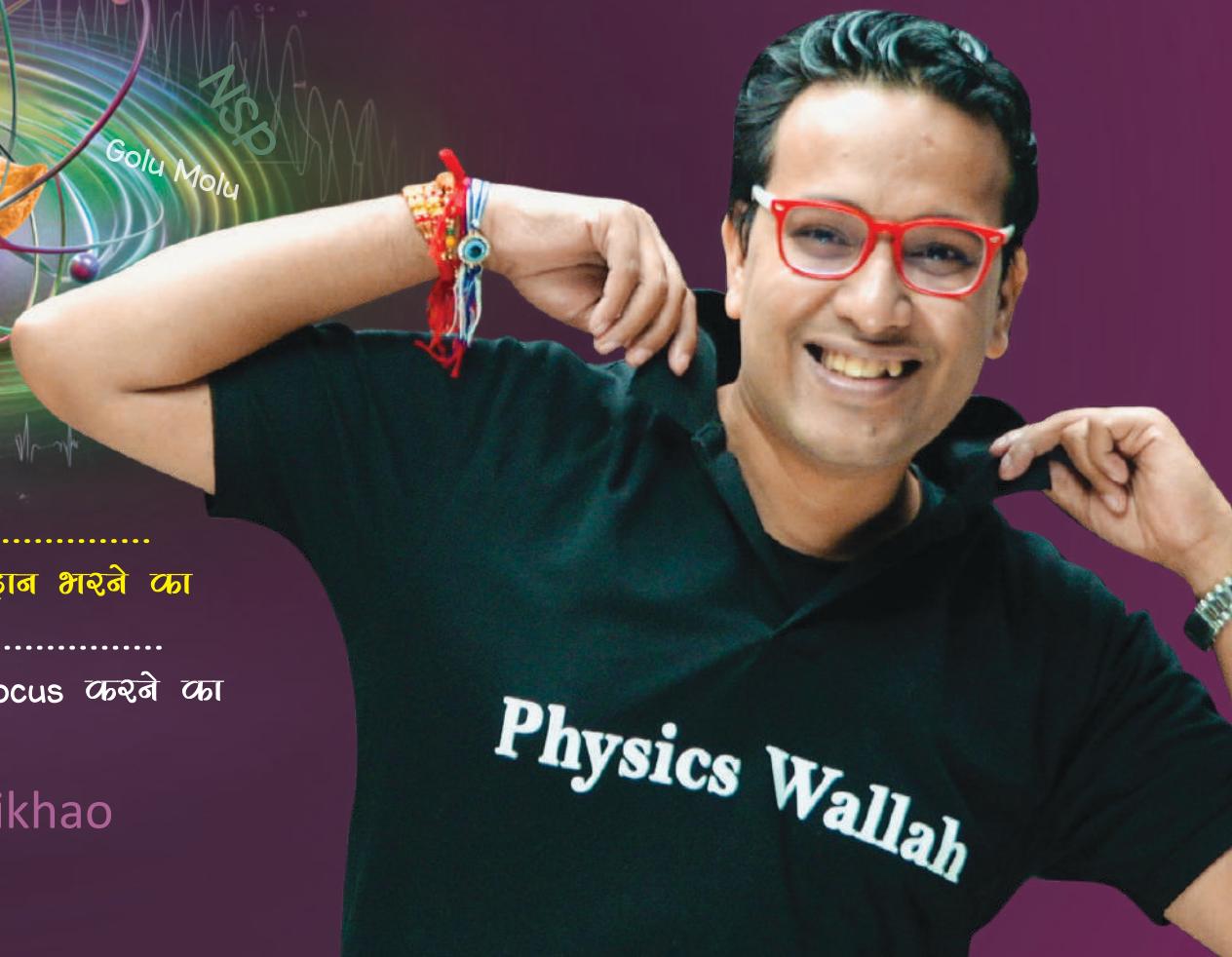
11

SKC PHYSICS CRUSH

Class Notes in Handwritten Format

A beautiful journey from basics to JEE Advanced via Mains/ NEET

By: Saleem Bhaiya



प्रयास है.....
Lakshya तक उड़ान भरने का
और Yakeen है.....
Arjuna की तरह Focus करने का

Pen tod kar dikhao

Physics Wallah

Contents

1. Units and Measurements.....	1-20
2. Vector.....	21-37
3. Kinematics.....	38-72
4. Newton's Laws of Motion & Friction.....	73-115
5. Circular Motion	116-130
6. Work, Power and Energy.....	131-159
7. Centre of Mass.....	160-193
8. Rotation	194-247
9. Gravitation.....	248-266
10. Mechanical Properties of Solid.....	267-276
11. Heat Transfer.....	277-309
12. KTG and Thermodynamics.....	310-334
13. Gas Laws.....	335-343
14. Simple Harmonic Motion	344-362
15. Wave	363-396
16. Fluid Mechanics and Dynamics.....	397-430
17. Error and Measurement.....	431-450

Share your video review on Instagram and tag me! I'd love to see it!
Join my Telegram channel & Insta.

Saleem.nitt

देख भाई इस chapter में mains or advance weightage ढूँढ़ने की गलती मत करना Mains में हर साल इससे question पूछे जाते हैं but advance में बहुत ही कम question पूछे गए हैं but पूरी mechanics का ये fundamental chapter है जो पूरी physics में use होगा, so इस chapter को हलके में ना ले।

INERTIA

- ★ It is the tendency to resist the change.
- ★ It is the property due to which a body wants to be in state of rest or in uniform motion in a straight line.
- ★ Mass is the measurement of inertia.

Momentum

It is the net motion contain in the system.

$$\vec{P} = m\vec{v}$$

देख भाई बाद में हम यह देखेंगे किसी body या system का momentum निकालने का तरीका होता है।

$$\left. \begin{aligned} \vec{P}_{\text{body}} &= M_{\text{body}} \vec{v}_{\text{com of body}} \\ \vec{P}_{\text{system}} &= M_{\text{system}} \vec{v}_{\text{com of syst.}} \end{aligned} \right\} \text{Com में} \quad \checkmark$$

Force → Push or Pull

Types of Force

1. Gravitational force → $mg, \frac{Gm_1 m_2}{r^2}$

2. Electromagnetic force

Tension force, Normal force, Friction, Electrostatic force, magnetic force etc.

3. Strong nuclear force

4. Weak nuclear force

यह हम 12th class में पढ़ेंगे।

Newton 1st Law (Law of inertia)

★ A body continue to be in state of rest or in state of uniform velocity (st. line) until or unless net external force acts on it.

Newton Second Law

$$(\vec{F}_{\text{net}})_{\text{ext}} = \frac{d\vec{p}}{dt} \quad \vec{P} = m\vec{v}$$

If $m \rightarrow \text{Const}$

$$(\vec{F}_{\text{net}})_{\text{ext}} = m \frac{d(\vec{v})}{dt} = m \frac{d\vec{v}}{dt} + \vec{v} \frac{dm}{dt}$$

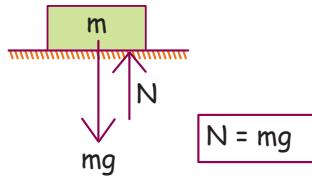
$$(\vec{F}_{\text{net}})_{\text{ext}} = \frac{d(m\vec{v})}{dt} = m \frac{d\vec{v}}{dt} + \vec{v} \frac{dm}{dt}$$

If mass of system is constant then

$$(\vec{F}_{\text{net}})_{\text{ext}} = \frac{md\vec{v}}{dt} = m\vec{a}$$

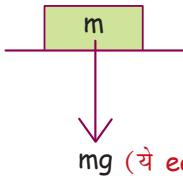
अब इसका मतलब है हर जगह $F = ma$ मत लगा देना जैसे rocket propulsion में mass variable होता है तो वहाँ $F = ma$ नहीं लगा सकते।

Newton Third law

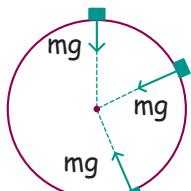

★ For every action there is equal and opposite reaction at the same time, simultaneously of the same nature.

- ★ Action and reaction simultaneously लगते हैं इसलिए we can't say की कौन action है और कौन reaction.
- ★ Two different body event.

SKC


According to this law अगर A ने B पर force लगाएगा $F \rightarrow$ तो B भी A पर वापस force लगाएगा F , of same nature at same time
(इस लाइन को याद करलो बहुत काम आएगा)

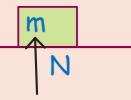
यहाँ normal और mg action reaction pair नहीं है।

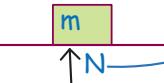

चलो पहले mg , normal, tension force पढ़ लेते हैं।

GRAVITATIONAL FORCE

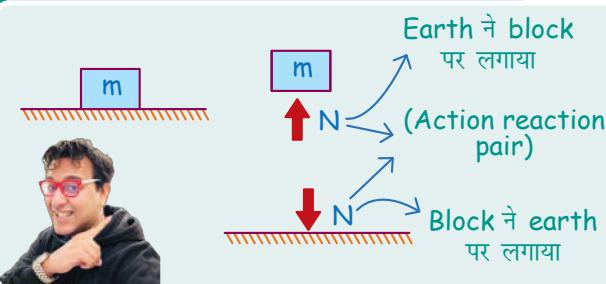
mg (ये earth ने mass पर लगाया)

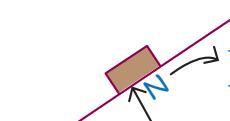
वैसे तो mg की direction towards the centre of earth है। जिसे हम gravitation में detail में पढ़ेंगे

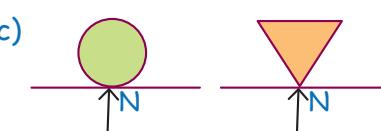



Block चाहे earth पर हो या हवा में हो mg force तो लगेगा ही।

NORMAL FORCE


- ★ It act towards the body perpendicular to the surface.
- ★ Pushing nature.


अगर कोई body kissi के साथ छुअन-छुआई कर रही है मतलब किसी surface के साथ contact/touch कर रही है तो उस body पर body की तरफ normal force लगेगा अब ये मत कहना mg क्यों नहीं लगाया Bcz अभी हम only normal force की बात कर रहे हैं।



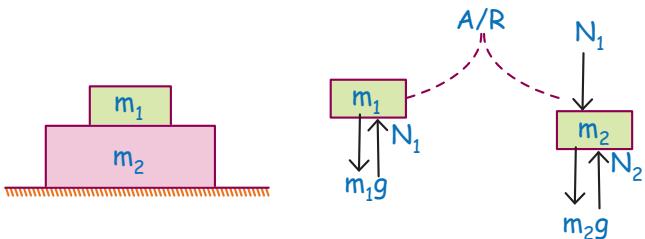
(a)

Block, earth के contact में है तो earth भी तो block के contact में है Hence, earth block को touch कर रही है तो earth पर भी normal लगेगा जो block लगाएगा।

(b)

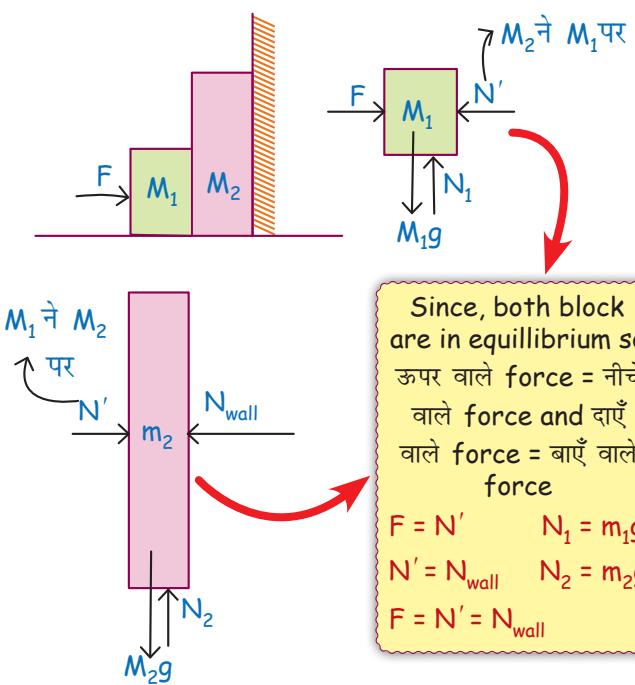
Draw the FBD of Block

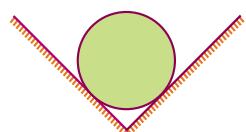
SKC



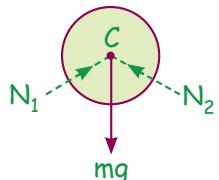
ध्यान से सुन लो FBD (Free Body Diagram) बनाने का मतलब है जिस body की हम FBD बना रहे हैं उस पर लगने वाले सारे external force दिखाने हैं मतलब वो body दूसरे लोगों पर कितना force लगा रही है हमें इससे कोई मतलब नहीं।

Q. Draw FBD of all the block in following cases.


(a)

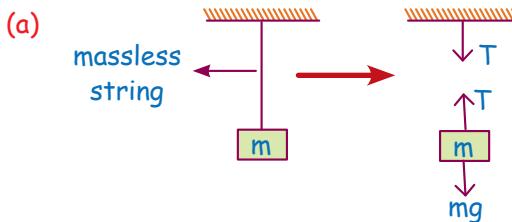

यहाँ दोनों block equilibrium में है तो हर block पर
we can say

net ऊपर वाला force = net नीचे वाला force
 $N_1 = m_1g$ $N_2 = N_1 + m_2g \Rightarrow N_2 = m_1g + m_2g$

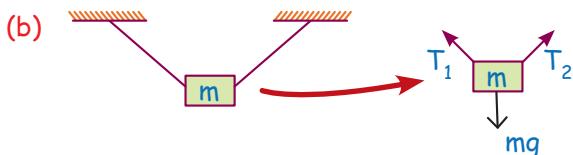

(b)

Q. A cylinder of weight W is resting on a V-groove as shown in figure. Draw its free body diagram.

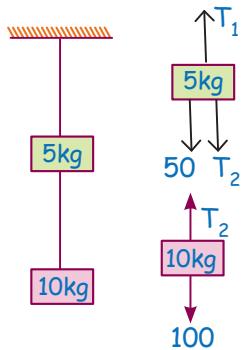
Sol.



TENSION FORCE


★ It acts away from the body towards string.

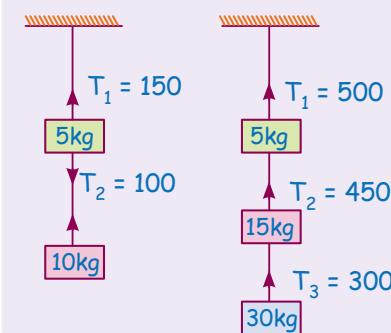
★ It is a pulling force.


Q. Draw FBD of mass in following case.

Here if string is massless then tension at every point is massless

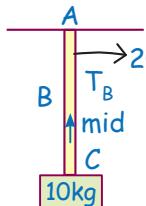
Q. Find tension in each string if all string are mass less.

$$T_1 = T_2 + 50 \dots \text{(i)}$$


Both block are in equilibrium so ऊपर वाले force = नीचे वाले force

$$T_2 = 100 \dots \text{(ii)}$$

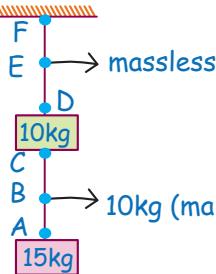
Solve (i) and (ii)


$$T_1 = 150$$

अबे ये detail में तो मुझे मजबूरी में लिखना पड़ रहा है भाइ तू तो इसे direct कर, ऊपर वाली रस्सी को पकड़ देख नीचे कितना mass लटका है (15 kg so, $T_1 = 150$) similarly नीचे वाली रस्सी को पकड़ कर tension निकालो।

Q. 10 kg block is suspended through a string of mass 20 kg as shown in figure. Find T_A , T_B , T_C .

Sol. जिस जगह tension पूछी है देखो उसके नीचे total कितना mass है।



$$T_c = 100 \text{ N}$$

$$T_B = (10 + 10)g = 200 \text{ N}$$

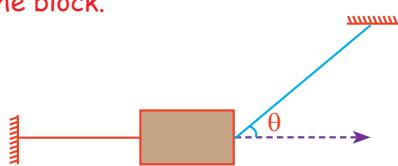
$$T_A = 300 \text{ N}$$

Q.

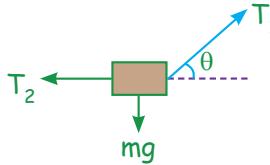
$$T_A = 150$$

$$T_B = 200$$

$$T_C = 250$$


$$T_D = 350$$

$$T_E = 350$$


$$T_F = 350$$

Mass वाली रस्सी अबे मतलब mass वाली रस्सी

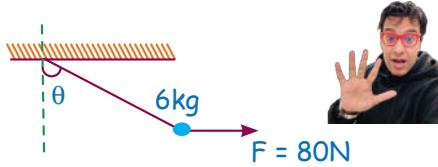
Q. A block of mass m is attached with two strings as shown in figure. Draw the free body diagram of the block.

Sol.

EQUILIBRIUM वाले सवाल

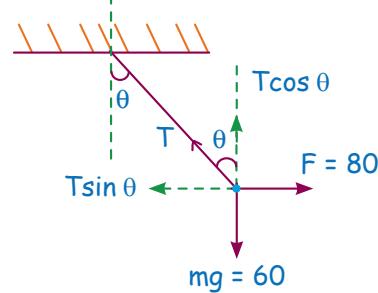
SKC

अगर body equil में है तो सबसे पहले उसकी FBD बनाओ सारे forces को X-Y axis मे तोड़ो और fir $F_{net} = 0$ करदो मतलब ऊपर वाले force = नीचे वाले force, left वाले force = right वाले force


If body is in equil

$$\Rightarrow \vec{F}_{net} = 0 \text{ (Translational equil.)}$$

$$\sum \vec{F}_x = 0, \quad \sum \vec{F}_y = 0, \quad \sum \vec{F}_z = 0$$



Q. Body is in equilibrium find $\theta = ?$

भाई हसना मत ये ques. पिछले 5 साल में 4 बार mains ने पूछा है।

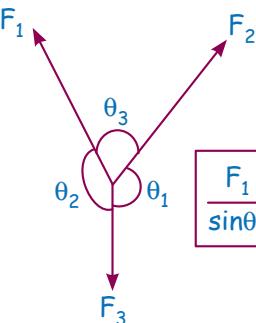
Sol.

$$T \sin \theta = 80$$

$$T \cos \theta = 60$$

$$\tan \theta = \frac{80}{60} = \frac{4}{3}$$

$$\theta = 53$$


$$T \sin 53^\circ = 80$$

$$T = 100$$

or after solving we got $T = \sqrt{F^2 + (mg)^2}$

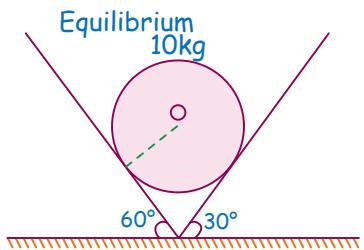
M-2 Lami theorem

If $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$, in following case.

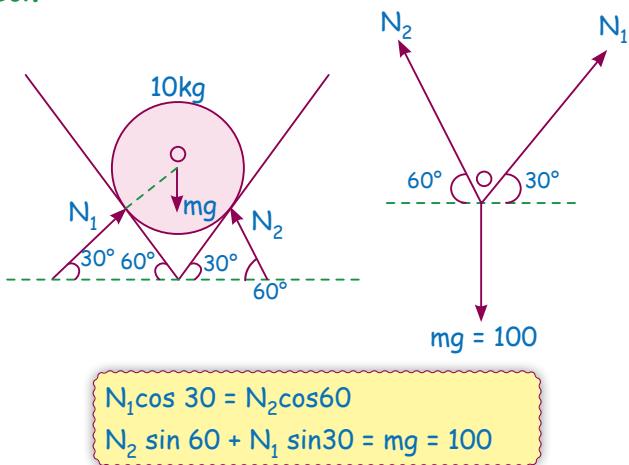
$$\frac{F_1}{\sin \theta_1} = \frac{F_2}{\sin \theta_2} = \frac{F_3}{\sin \theta_3}$$

Let's solve last ques from lami theorem

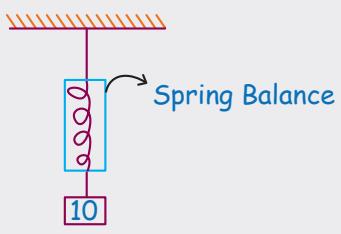
$$\frac{80}{\sin(180 - \theta)} = \frac{T}{\sin 90} = \frac{60}{\sin(90 + \theta)}$$


$$\frac{80}{\sin \theta} = \frac{60}{\cos \theta}$$

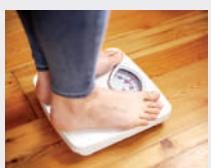
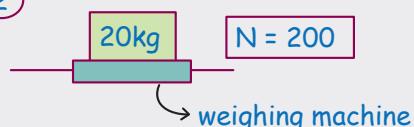
$$\tan \theta = \frac{80}{60} \Rightarrow \theta = 53$$


भाई मुझे तो ये lami theorem घटिया method लगता है bcz ना तो इससे feel आती है और time उतना ही लगेगा मेरे यहाँ बता दिया है कहीं तू बाद मे बोले बताया नहीं। So, i will suggest की component लेके, force equate करके solve करो।

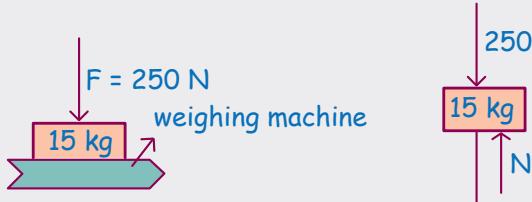
Q. Sphere is in equilibrium find force applied by inclined plane in following figure.


Sol.

Now you can solve and get N_1 and N_2 और मन करे तो lami theorem से answer verify कर लेना।



देख भाई ques. मे string मे tension पूछने का एक तरीका होता है reading of spring balance similarly normal पूछने का एक तरीका होता है reading of weighing machine

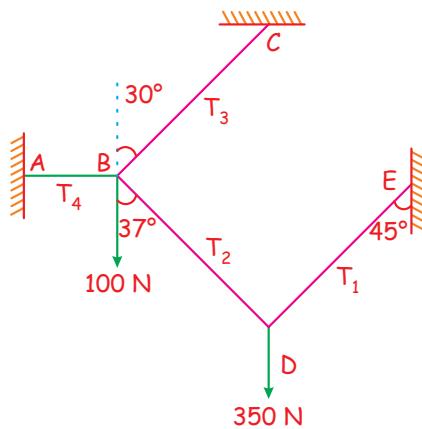
1


Reading of spring balance
System = $T = 100\text{N}$

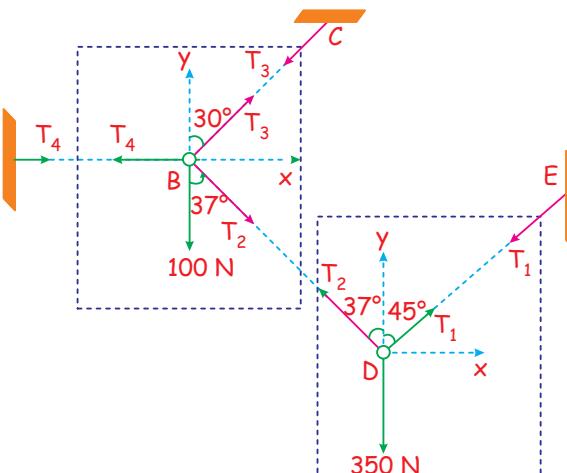
2

Reading of weighing machine = $N = 200$ newton

Q. Reading of weighing machine in following.



Reading of weighing machine will be


$$N = 250 + 150 = 400\text{N}$$

① 25 kg ② 20 kg ③ 40 kg ④ 50 kg

Q. Two particles of masses 10 kg and 35 kg are connected with four strings at points B and D as shown in figure. Find T_1 , T_2 , T_3

Sol.

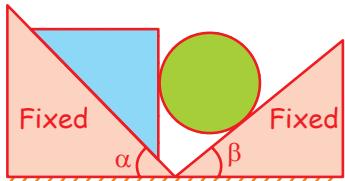
Analysing the equilibrium of point D:

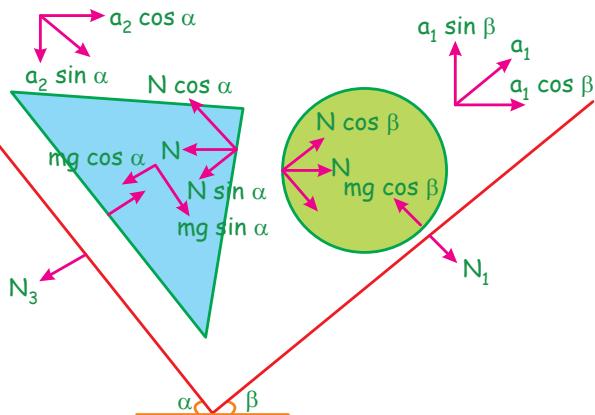
$$\sum F_x = 0 \text{ or } T_1 \sin 45^\circ - T_2 \sin 37^\circ = 0 \quad \dots (i)$$

$$\text{and } \sum F_y = 0 \text{ or } T_1 \cos 45^\circ + T_2 \cos 37^\circ = 350 \quad \dots (ii)$$

Solve both eqn. and get

$$\Rightarrow T_1 = 150\sqrt{2}\text{ N} \text{ and } T_2 = 250\text{ N}$$


Similarly for equil of point B
 $T_3 \cos 30^\circ = 100 + T_2 \cos 37^\circ$
 $T_3 \sin 30^\circ + T_2 \sin 37^\circ = T_4$
 Put value of $T_2 = 250$,
 & solve both eqn get
 the ans.


अब क्यों रो रहा है मुझे पता calculation मुश्किल है लेकिन advance के point of view से आदत डाल लो। ये ले दो सवाल और ले।

Q. A cylinder and a wedge of same masses with a vertical face, touching each other, move along two smooth inclined planes forming the same angle α and β respectively with the horizontal. Determine the force of normal N exerted by the wedge on the cylinder, neglecting the friction between them.

Sol.

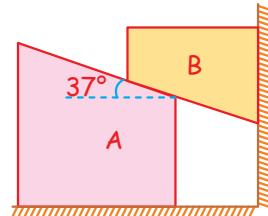
It is obvious that acceleration of cylinder is parallel to the wedge 1 and acceleration of triangular block is parallel to the wedge 2.

$$a_2 \cos \alpha = a_1 \cos \beta \quad \dots (i)$$

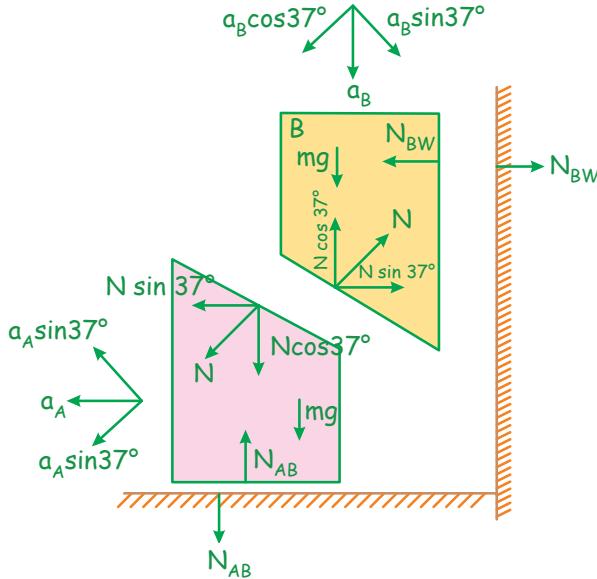
[constrained relation between the contact surface of block and cylinder]

$$N \cos \beta - m_1 g \sin \beta = m_1 a_1 \quad \dots (ii)$$

[Newton's II law for cylinder along the direction parallel to the wedge1]


$$m_2 g \sin \alpha - N \cos \alpha = m_2 a_2 \quad \dots (iii)$$

[Newton's II law for block along the direction parallel to the wedge 2]


By solving equation (i), (ii) and (iii) we get

$$N = mg \left(\frac{\sin \alpha \cos \alpha + \sin \beta \cos \beta}{\cos^2 \alpha + \cos^2 \beta} \right)$$

Q. The masses of blocks A and B are same and equal to m . Friction is absent everywhere. Find the magnitude of normal force with which block B presses on the wall and accelerations of the blocks A and B.

Sol.

$$mg - N \cos 37^\circ = m a_B$$

[Newton's II law for block B in vertical direction]

$$N \sin 37^\circ = m a_A$$

[Newton's II law for block A in horizontal direction]

$$a_B \cos 37^\circ = a_A \sin 37^\circ$$

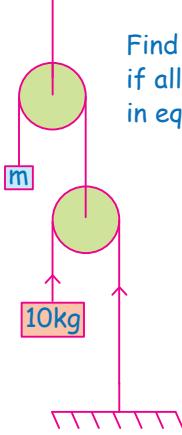
[constrained relation for contact surface between block A and B]

By solving above three equations we get

$$a_A = \frac{12g}{25}, a_B = \frac{9g}{25}, N = \frac{4mg}{5}$$

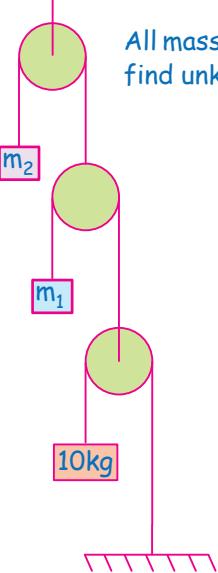
$$N_{BW} = N \sin 37^\circ$$

[Equilibrium of block B in horizontal direction]

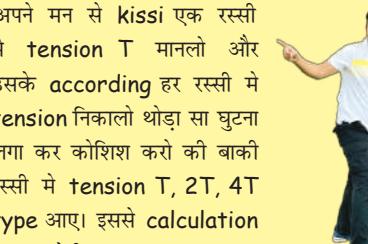

$$\Rightarrow N_{BW} = \frac{12mg}{25}$$

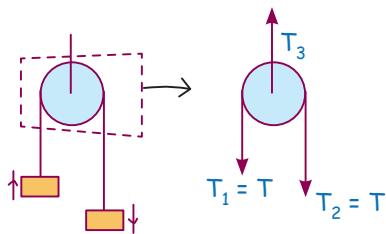
PULLEY SYSTEM / ATWOOD MACHINE

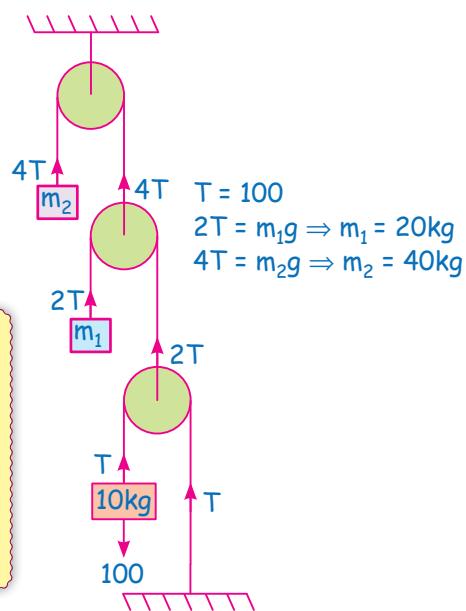
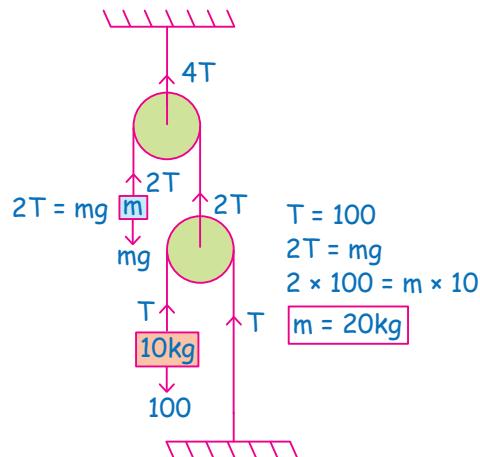
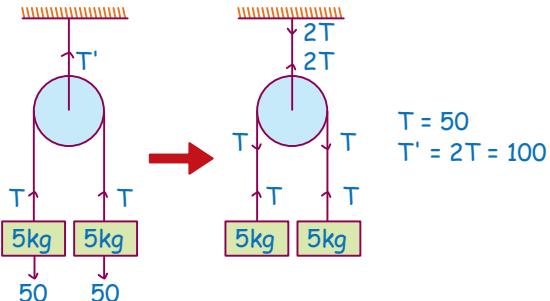
Real Pulley


Q.

Find m
if all mass are
in equilibrium


Q.


All masses are in equil
find unknown mass

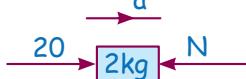



अपने मन से kissi एक रस्सी में tension T मानलो और उसके according हर रस्सी में tension निकालो थोड़ा सा घुटना लगा कर कोशिश करो की बाकी रस्सी में tension T, 2T, 4T type आए। इससे calculation easy रहेगी।

Ideal Pulley \rightarrow massless, no friction
between string and pulley.


If pulley is ideal then $T_3 = T_1 + T_2 = 2T$

Q. Find acc and normal between blocks.

Sol.


Solve and get $a = 3$, $N = 14$

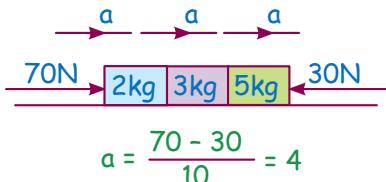
Method-2:

$$\left(\sum F_{\text{ext}} \right) = 20 - 5 = (2 + 3) a$$

$$15 = 5a$$

$$a = 3$$

$$20 - N = 2 \times 3$$

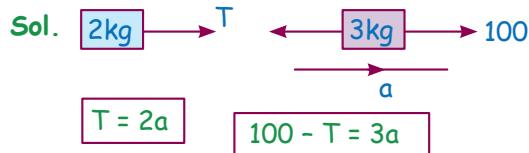
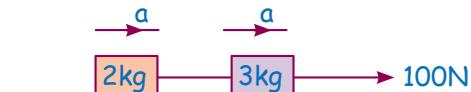

$$N = 14$$

SKC

आई जो बच्चे पहली बार NLM पढ़ रहे हैं उनके लिए एक बहुत ही important बात बता रहा हूँ जब भी कभी normal, tension या spring force पूछे ये याद रखो कि FBD बनाकर eqn लिखनी है (VVI)

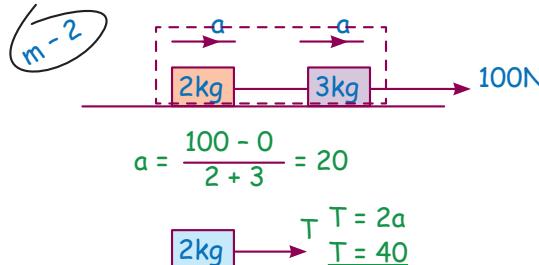
Q. Find acc and normal between blocks.

$$a = \frac{70 - 30}{10} = 4$$



force applied by 3kg on 5kg

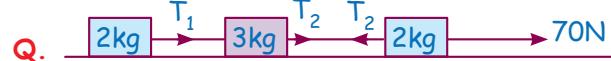
$$N - 30 = 5a$$

$$N = 30 + 20 = 50$$


Q. Find acc of each block and tension in string.

Solve and get $a = 20$ and $T = 40$

$$a = 20$$


$$T = 40$$

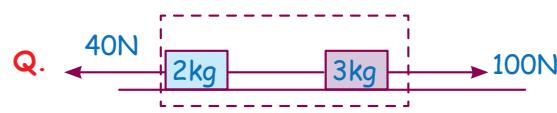
$$a = \frac{100 - 0}{2 + 3} = 20$$

$$T = 2a$$

$$T = 40$$

Sol.

$$a = \frac{70 - 0}{2 + 3 + 2} = 10$$

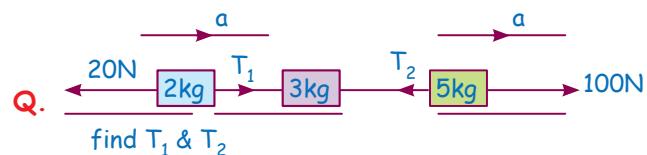

$$T_1 = 2a$$

$$T_1 = 2 \times 10 = 20$$

$$T_2 - T_1 = 3a$$

$$T_2 - 20 = 3 \times 10$$

$$T_2 = 50 \text{ N}$$

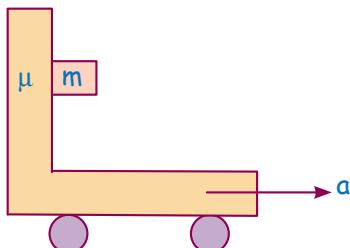


$$a = \frac{100 - 40}{2 + 3} = 12$$

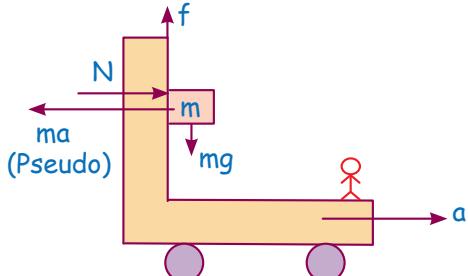
$$T = 40$$

$$T - 40 = 2 \times 12$$

$$T = 64$$


$$a = \frac{100 - 20}{2 + 3 + 5} = 8$$

$$100 - T_2 = 5 \times 8$$


$$T_1 - 20 = 2 \times 8$$

$$T_2 = 60$$

$$T_1 = 36$$

Sol.

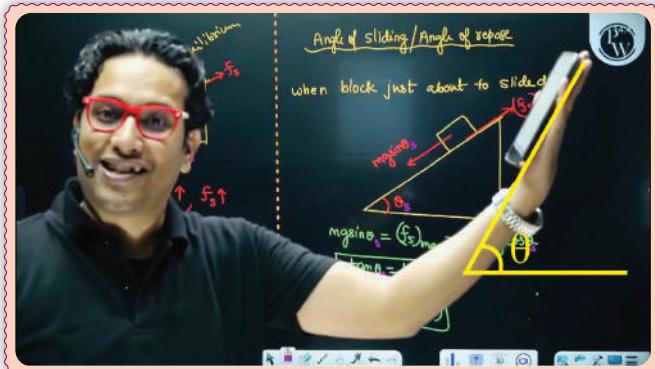
$$\text{सही} \Rightarrow mg \leq (f_s)_{\max}$$

$$mg \leq \mu N$$

$$mg \leq \mu ma$$

$$\frac{g}{\mu} \leq a$$

$$N = ma \quad \dots(1)$$

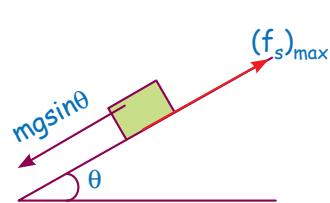

$$mg = (f_s)_{\max} = \mu N$$

$$mg = \mu ma$$

$$a = \frac{g}{\mu}$$

Answer for both the (a) and (b) is same and equal to $\frac{g}{\mu}$

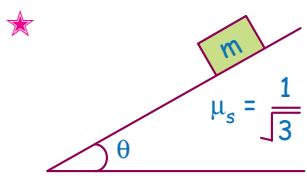
Angle of Repose/Angle of Sliding



अगर मैं ऊपर वाली image में अपने हाथ को ऊपर उठाता जाऊँ मतलब θ increase करता जाऊँ तो जिस angle पर ये mobile just नीचे फिसलना start हो जाएगा उस angle को हम फिसलने वाला angle कहते हैं बोले तो angle of sliding.

A block of mass m is at rest on a rough incline plane making angle θ with horizontal. The angle θ at wedge block is just about to slide down is called angle of repose.

When block is just about to slide

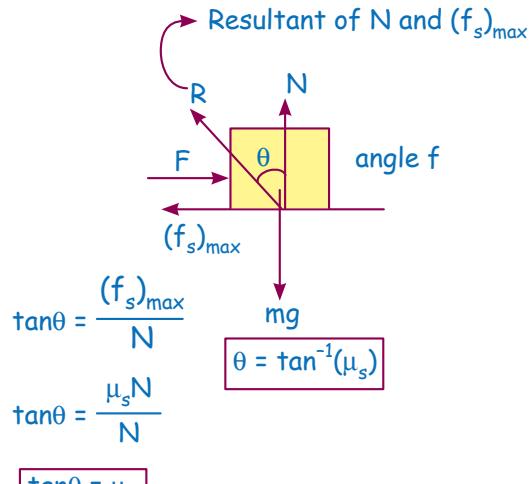

$$mg \sin \theta = (f_s)_{\max} = \mu_s mg \cos \theta$$

$$\mu_s = \tan \theta$$

$$\theta = \tan^{-1}(\mu_s) = \text{angle of repose}$$

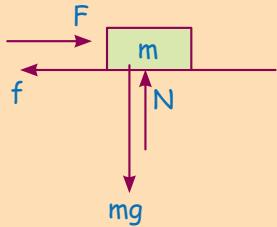
If $\theta \leq \theta_s$ = Rest

$\theta > \theta_s$ = Slide down

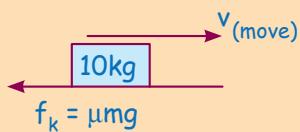

$$\tan \theta = \mu_s = \frac{1}{\sqrt{3}}$$

$$\theta_s = 30^\circ$$

$\theta \leq 30^\circ \Rightarrow$ Block Rest

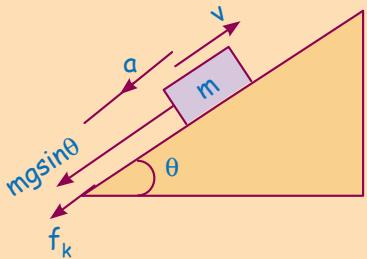

$\theta > 30^\circ \Rightarrow$ Block Move

Angle of Friction



काम का डब्बा

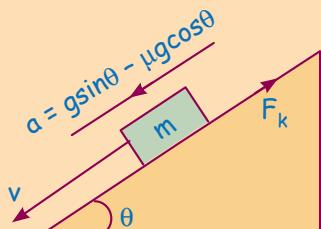
$$\text{Net contact force} = \sqrt{N^2 + f^2}$$

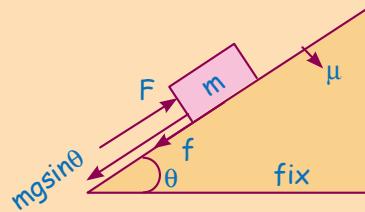


$$a = \frac{f_k}{m} = \frac{\mu mg}{m} = \mu g \text{ (पीछे)}$$

Stopping distance निकालने के लिए 3rd eqn of

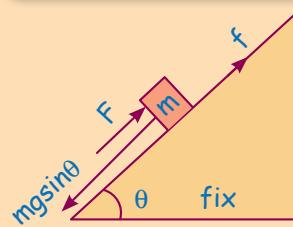
$$\text{motion लगाओ } 0^2 = v^2 - 2(\mu g)x$$


★ When block is moving up along the inclined


$$ma = mg \sin \theta + \mu_k mg \cos \theta$$

$$a = g \sin \theta + \mu g \cos \theta \quad \text{पीछे}$$

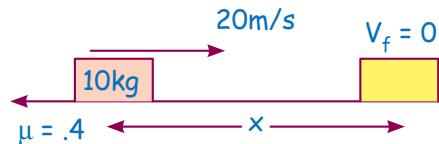
★ When block is moving down along the inclined


$$a = g \sin \theta - \mu g \cos \theta$$

min value of F so that block slide up.

$$F_{\min} = mg \sin \theta + (f_s)_{\max}$$

$$F_{\min} = mg \sin \theta + \mu_s mg \cos \theta.$$

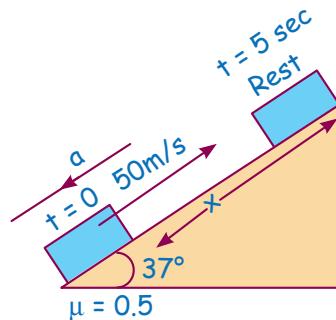

min value of F to prevent the block sliding down

$$F + (f_s)_{\max} = mg \sin \theta$$

$$F = mg \sin \theta - \mu mg \cos \theta$$

Q. In following fig. Find distance travel by block before coming to rest.

Sol.

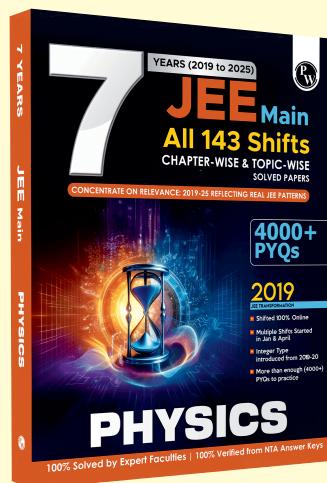
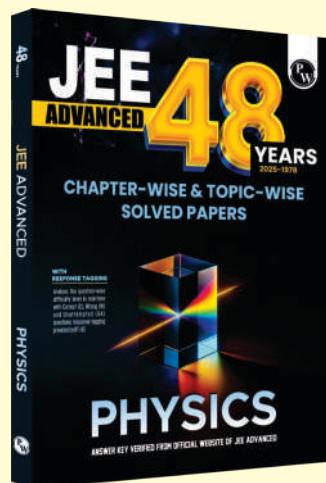
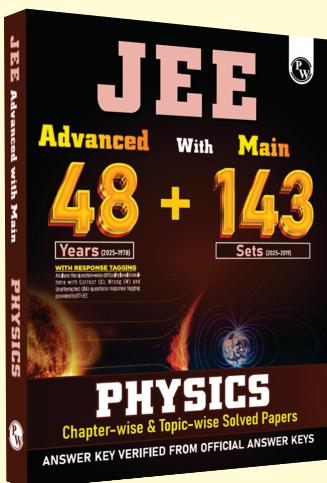
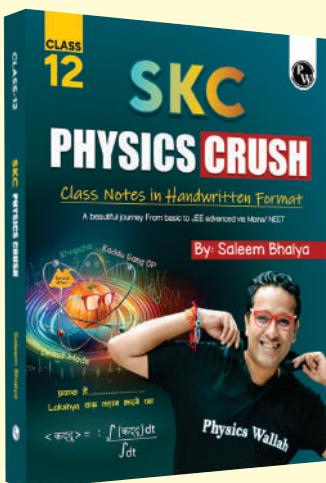


$$a = \mu g = 4 \text{ (पीछे)} = \text{cost.}$$

$$0^2 = (20)^2 - 2 \times 4 \times x$$

$$x = 50 \text{ m}$$

Q. In the given fig. block is projected along the rough incline ($\mu = 0.5$) with speed 50 m/s. Find distance travel by block before coming to rest.





About the Author

Saleem Ahmed, an alumnus of NIT Trichy with a B.Tech in Electronics and Communication Engineering (ECE), is a highly respected Physics educator with experience of **12+ Years** known for his **engaging teaching style and student-centric approach**.

With over 8 years of experience as a **Senior and Star Faculty** at Allen Career Institute, Kota, he has **mentored lakhs of students**, including many with **top ranks under 100 and under 50** in JEE. Currently, he is a core member of **Physics Wallah**, continuing to guide students with **conceptual clarity and problem-solving expertise**.

Affectionately called "**Saleem Bhaiya**", his classes focus on **building concepts from basic to advanced**, helping students unlock their potential. His non stop **17-hours** in 2023, non stop **19-hours** and non stop **20 hours** in 2024 **marathon sessions** on the **PW JEE Wallah / PW Alakh Pandey YouTube channels** reflect his dedication to student success. Saleem Ahmed's commitment has left a lasting impact on JEE aspirants across the country.

Other Helpful Books

