
Latest Edition

CSIR-NET RECAP

Chapter-wise and Year-wise Previous Years Solved Papers

(2015 June 2025)

GROUP →		PERIOD →																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
H	Be	O																	
Hydrogen	Beryllium	Oxygen																	
1.008	9.012	15.999																	
3 6.941	4 9.012	8 15.999																	
Li																			
Lithium																			
22.990	24.305																		
Na	Mg																		
Sodium	Magnesium																		
19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.971	35 79.904	36 83.798		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton		
37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.95	43 98.907	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29		
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe		
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon		
55 132.91	56 137.33	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 199.88	82 207.2	83 208.98	84 209. (209)	85 210. (210)	86 222. (222)					
Cs	Ba	La	Ta	W	Re	Os	Ir	Pt	Au	Ag	Cd	In	Pb	Bi	Po	At	P		
Cesium	Barium	Lanthanide Series	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Silver	Cadmium	Indium	Lead	Bismuth	Polonium	Atmospheric	P		
87 (223)	88 (226)	89 (227)	105 (262)	106 (266)	107 (264)	108 (269)	109 (268)	110 (281)	111 (280)	112 (281)	113 (280)	114 (286)	115 (288)	116 (292)					
Fr	Ra	Ac	Db	Sg	Bh	Hf	Mt	Ds	Rg	Hg	Fr	Fl	Hf	Mc	Es	Fm			
Francium	Radium	Actinide Series	Dubnium	Seaborgium	Bh	Hafnium	Mt	Darmstadtium	Roentgenium	Hg	Darmstadtium	Florovium	Moscovium						
58 140.12	59 140.91	60 144. (238)	61 141.02	62 141.90	63 143.90	64 145.90	65 147.25	66 149.50	67 150.50	68 154.90	69 157.25	70 159.50	71 164.93	72 167.25					
Cerium	Praseodymium	Neodymium	Europium	Terbium	Dysprosium	Neodymium	Praseodymium	Europium	Terbium	Dysprosium	Neodymium	Praseodymium	Europium	Terbium	Holmium	Erbium			
91 231.04	92 238. (238)	93 232.04	94 233.04	95 234.04	96 235.04	97 236.04	98 237.04	99 238.04	100 239.04	101 240.04	102 241.04	103 242.04	104 243.04	105 244.04	106 245.04	107 246.04			
Th	Pa	U	Pa	U	Pa	U	Pa	U	Pa	U	Pa	U	Pa	U	Pa	U			
Alkaline Metal	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium	Protactinium	Uranium			

Latest Exam
Questions
Covered

Chemical
Sciences

Also useful for GATE, TIFR, BARC, AND IIT JAM Exams

Analysis

Topic	No. of Questions Year Wise															
	2016 Dec.	2017 June	2017 Dec.	2018 June	2018 Dec.	2019 June	2019 Dec.	2020 Nov.	2022 Feb.	2022 Sept.	2022 - Dec 2023 - June	2023 Dec	2024 June	2024 Dec.	2025 June	
Organic Chemistry	Stereochemistry	3	3	4	1	2	3	2	2	7	3	1	3	3	2	3
	Reagents	8	6	3	4	6	7	6	6	5	4	5	8	9	7	5
	Reaction Mechanism	3	1	3	3	5	2	6	1	2	1	3	4	6	4	6
	Reaction Intermediates	5	3	5	3	2	6	2	2	2	3	5	3	4	4	4
	Name Reaction	12	2	3	3	5	3	5	8	6	5	2	6	8	9	3
	GOC and Aromaticity	3		1	1				3	3	2	3	1	2	1	4
	Organic Spectroscopy	7	4	6	9	3	6	8	7	2	4	8	3	4	6	4
	Organic Photochemistry	1	2	1	3	1	2	1	2	1	2	1	1	1	1	1
Inorganic Chemistry	Pericyclic Reaction	5	4	6	8	5	4	4	4	5	3	3	4	5	3	4
	Bioinorganic Chemistry	4	4	3	2	2	2	2	2	3	2	3	2	3	3	3
	Chemical Bonding	1	1	4	1	2	4	3	2	2	3	3	3	1	2	2
	Coordination Compounds	10	8	7	7	7	10	9	7	9	5	3	7	9	7	6
	F Block	2	1	3	2	1	1	1	2	1	1	4	2	2	1	3
	Inorganic Spectroscopy	6	2	1	1	2	1	1	1	1	2	1	3	2	2	3
	Main Group	3	2	1	3	5	7	3	3	4	4	2	4	5	2	5
	Organometallics	9	8	4	8	12	7	10	10	6	5	8	8	5	8	7
Physical Chemistry	Periodic Properties		1	2	2	1	1	1	3		3	2	3	1	1	3
	Group Theory	3	4	3	2	3	2	2	3	3	3	2	3	3	2	3
	Chemical Kinetics	5	5	3	4	3	2	5	1	3	3	2	4	4	3	4
	Thermodynamics	3	3	3	2	2	3	4	4	3	2	4	3	3	4	4
	Statistical Thermodynamics	3	2	2	1	3	1	3	2	1	5	1	2	2	1	3
	Solid State	2	2	2	2	2	2	2	2	2	1	2	2	2	2	4
	Quantum Mechanics	7	5	6	5	5	6	4	4	2	5	8	5	6	5	6
	Polymer Chemistry	2		1			3	1	1	1	1	1	1	0	1	1
	Molecular Spectroscopy	3	2	2	4	2	2	2	2	2	2	1	3	3	2	3
	Electrochemistry	4	2	3	4	4	4	4	3	4	3	4	4	4	3	3
	Surface Chemistry	1	1		2	1		1	2	2	1	1	1	1	2	3
Total		115	78	81	87	86	90	89	89	82	78	83	93	91	88	100

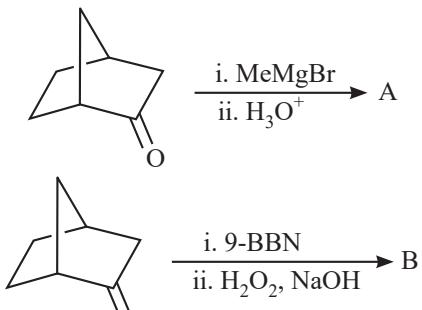
Contents

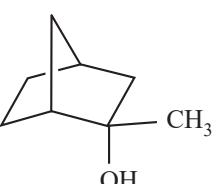
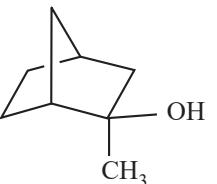
- June 2025 1-34

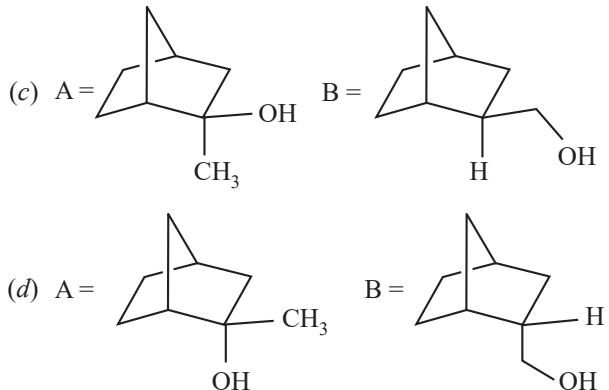
PART-A: ORGANIC CHEMISTRY

1. Stereochemistry 37-49
2. Reagents 50-84
3. Reaction Mechanism 85-108
4. Reaction Intermediates 109-126
5. Name Reaction 127-156
6. GOC and Aromaticity 157-165
7. Organic Spectroscopy 166-186
8. Organic Photochemistry 187-193
9. Pericyclic Reaction 194-224

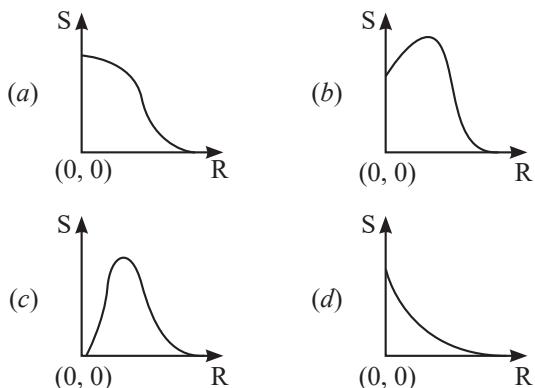
PART-B: INORGANIC CHEMISTRY

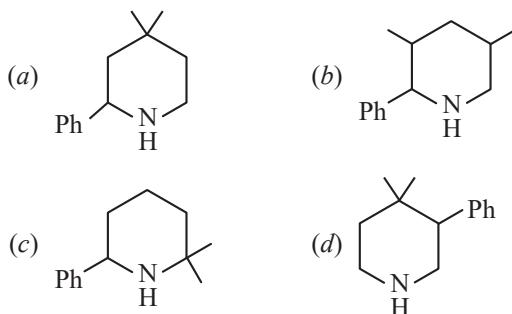

10. Bioinorganic Chemistry 227-237
11. Chemical Bonding 238-247
12. Coordination Compounds 248-272
13. f-Block 273-281
14. Inorganic Spectroscopy 282-291



15. Main Group	292-304
16. Organometallics.....	305-336
17. Periodic Properties	337-342

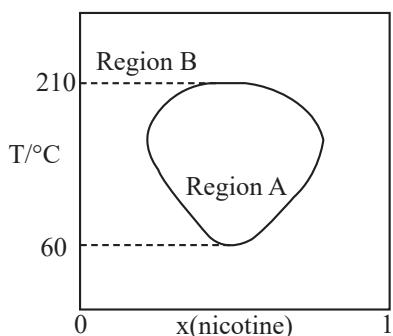

PART-C: PHYSICAL CHEMISTRY

18. Group Theory	345-356
19. Chemical Kinetics	357-370
20. Thermodynamics	371-382
21. Statistical Thermodynamics	383-392
22. Solid State.....	393-401
23. Quantum Mechanics.....	402-424
24. Polymers.....	425-429
25. Molecular Spectroscopy.....	430-439
26. Electrochemistry.....	440-453
27. Surface Chemistry	454-462


- In a colloidal solution, the zeta potential is the electric potential at the
 - Radius of the colloid particle
 - Radius of Stern layer
 - Radius of shear surface
 - Outer radius of diffuse ion layer
- The number of metal-metal bonds in $[\text{Os}_4(\text{CO})_{16}]$, is
 - 4
 - 5
 - 6
 - 3
- The complete combustion of 9.83 mg of an organic compound $\text{C}_x\text{H}_y\text{O}_z$ gives 23.26 mg of CO_2 and 9.52 mg of H_2O . The ESI-MS analysis of this compound gave a molecular ion peak at 130 (m/z). The value of X is [Given: Atomic weight: C = 12; H = 1; O = 16]
 - 7
 - 3
 - 4
 - 8
- The major products A and B formed in the following reactions are

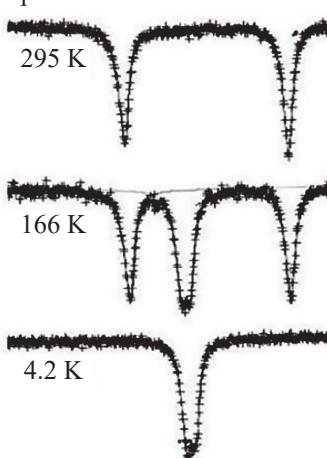

- $\text{A} = \text{B} =$
- $\text{A} = \text{B} =$

- For a diatomic molecule AB, the internuclear distance is R, and the internuclear axis is along the z-direction. The plot of the overlap integral S for the p_x orbital of A and d_{zx} orbital of B, against R, is



- Compound A on Hofmann exhaustive N-methylation procedure (involving two cycles), followed by ozonolysis (i. O_3 ; ii. Me_2S gives benzaldehyde, formaldehyde, and 2,2-dimethylpropanal. The structure of A is

(a) i. deprotonation, ii. O-methylation
 (b) i. enolate formation, ii. retro-aldol reaction, iii. O-methylation
 (c) i. deprotonation, ii. retro-aldol reaction, iii. O-methylation, iv. aldol reaction
 (d) i. deprotonation, ii. retro-aldol reaction, iii. aldol reaction, iv. O-methylation


45. Consider the following temperature-composition diagram for water and nicotine.

The correct option is

(a) The system has two critical solution temperatures; both nicotine and water are completely miscible at 100°C and $x(\text{nicotine}) = 0.5$
 (b) At 75°C and $x(\text{nicotine}) = 0.5$, nicotine and water form a strong complex which does not dissociate
 (c) Nicotine and water form a weak complex at 50°C; the number of phases (P) in the region A is 2
 (d) Thermal motion homogenises the mixture in the entire region B where P = 1

46. The Mössbauer spectra of $[\text{Fe}(\text{L})_2] \text{I}_2$ ($\text{L} = 3,5\text{-dimethyl-tris-pyrazolylborate}$), shown below, exhibit temperature-dependent spin-transition behaviour.

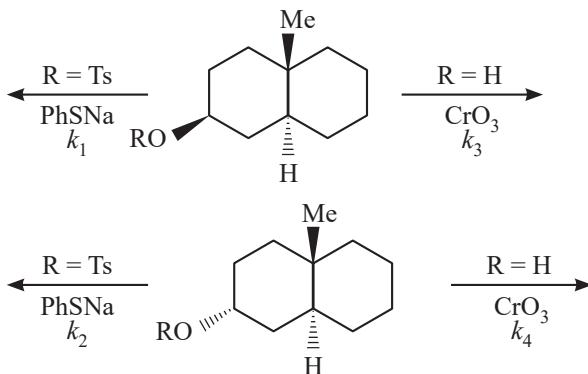
The correct statements from the following

A. At 295 K, the Fe(II) center is high-spin.
 B. At 4.2 K, the Fe(II) center is low-spin.
 C. At 295 K, the Fe(II) center is low-spin.

D. At 4.2 K, the Fe(II) center is high-spin.
 E. At 166 K, it represents a mixture of low-spin and high-spin Fe(II) complexes are
 (a) A, B, and C only (b) B, C, and E only
 (c) C, D, and E only (d) A, B, and E only

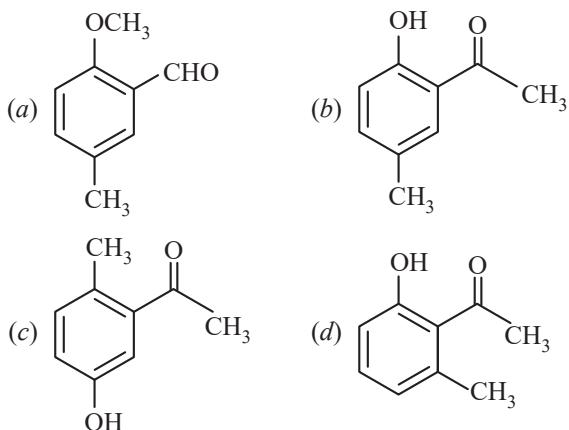
47. The rate law for the reaction $\text{N}_2\text{O}_2(\text{g}) \rightarrow 2\text{NO}(\text{g})$ is first order in the concentration of N_2O_2 . If the initial concentration of N_2O_2 is 1.0 mol dm^{-3} , the expression for the time-dependent behavior of the concentration of NO (in mol dm^{-3}) is
 (a) $2(1 - e^{-kt})$ (b) $1 - e^{-kt}$
 (c) $0.5(1 - e^{-kt})$ (d) $1 + e^{-kt}$

48. The correct statements regarding olefin polymerization involving metallocene and alkyl aluminum species, from the following

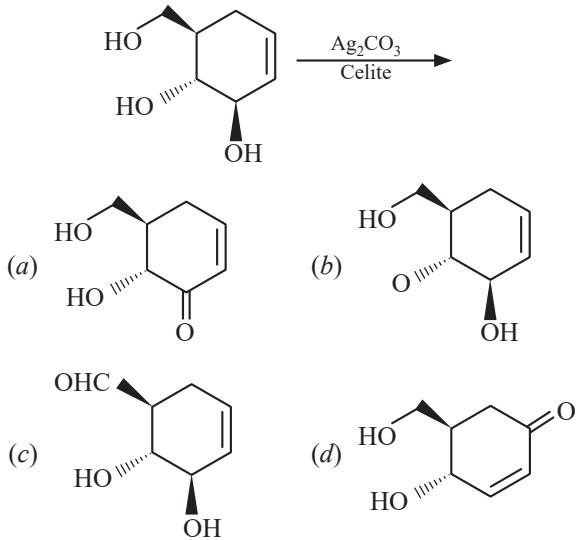

A. Trace amounts of water cause a significant increase in the rates of ethylene polymerization by the $\text{Cp}_2\text{TiEtCl/AlEt}_2\text{Cl}$ system
 B. Methylaluminoxane (MAO) is employed as an activator for the catalyst, Cp_2ZrMe_2 .
 C. $\text{B}(\text{C}_6\text{F}_5)_3$ is an activator for Cp_2ZrMe_2 .
 D. The termination step of the polymerization reaction is β -hydride elimination.

are,

(a) A, B, C and D (b) A, B and C only
 (c) A, B and D only (d) B, C and D only


49. If the crystal field splitting energy of d-orbitals follows the order: $d_z^2 < d_{xy} = d_x^2 - y^2 < d_{xz} = d_{yz}$, the ligand field is
 (a) square planar (b) Trigonal bipyramidal
 (c) square antiprismatic (d) pentagonal bipyramidal

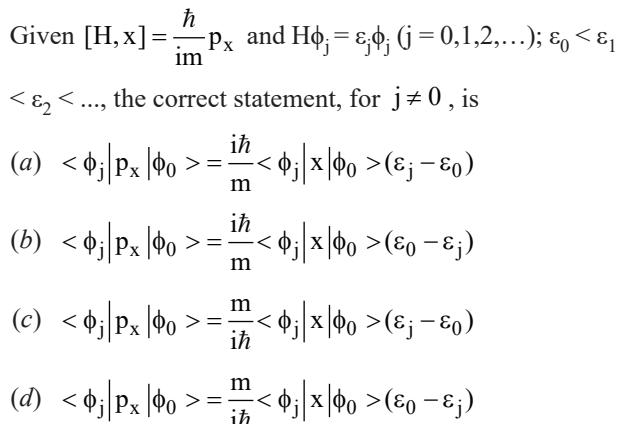
50. The relative order of rate constants in the following transformations are



(a) $k_2 > k_1; k_4 > k_3$ (b) $k_2 > k_1; k_3 > k_4$
 (c) $k_1 > k_2; k_4 > k_3$ (d) $k_1 > k_2; k_3 > k_4$

51. The compound that gives the following ^1H NMR spectral data is ^1H NMR (CDCl_3): δ11.80(s, 1H), 7.69(d, $J = 2.3$ Hz, 1H), 7.35(dd, $J = 8.5, 2.3$ Hz, 1H), 6.86(d, $J = 8.5$ Hz, 1H), 2.63(s, 3H), 2.28(s, 3H) ppm

52. The major product formed in the following reaction is


53. The character table of the C_{3v} point group is as follows.

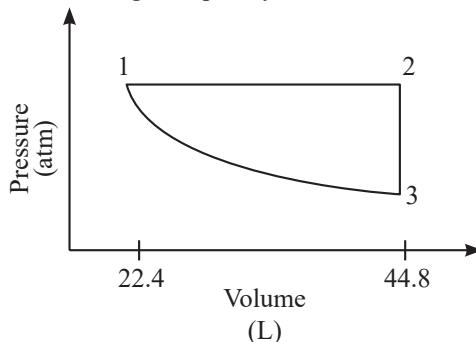
C_{3v}	E	2C_3 (z)	$3\sigma_v$		
A_1	1	1	1	z	$\text{x}^2 + \text{y}^2, \text{z}^2$
A_2	1	1	-1	R_z	
E	2	-1	0	$(\text{x}, \text{y})(\text{R}_x, \text{R}_y)$	$(\text{x}^2 - \text{y}^2, \text{xy})(\text{xz}, \text{yz})$

For normal modes of vibration of NH_3 , the correct statement, among the following, is

- (a) Some of the normal modes are IR-inactive
- (b) At least one normal mode is both IR and Raman-inactive
- (c) Mixing of normal modes by the symmetry operations is not possible
- (d) For some of the normal modes, the wavefunction of first vibrational excited state is totally symmetric

54. Let $H(x)$ be the Hamiltonian defined by $H(x) = \frac{p_x^2}{2m} + V(x)$.

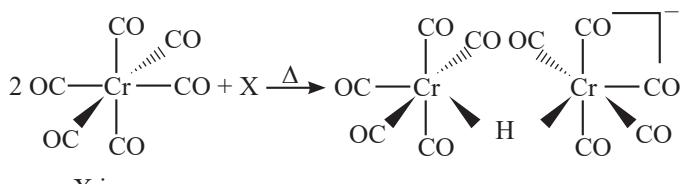
55. A particle of mass m is confined to a one-dimensional box of unit length. The wave function of the system is


$$\psi(x) = \sqrt{\frac{8}{5}} \sin(\pi x)[1 + \cos(\pi x)] \text{ for } 0 \leq x \leq 1, \text{ and zero elsewhere. The average value of the energy in this state is}$$

$(a) \frac{\hbar^2}{5m} \quad (b) \frac{\hbar^2}{3m} \quad (c) \frac{\hbar^2}{8m} \quad (d) \frac{\hbar^2}{10m}$

56. The rotational constant of a diatomic molecule is 2.0 cm^{-1} . The wavelength of the excitation laser is 333 nm . Assuming rigid rotor model of diatomic molecule, the first three Stokes lines (in cm^{-1}) in the rotational Raman spectrum are predicted to be closest to

- (a) 30018, 30010, 30002
- (b) 30058, 30050, 30042
- (c) 30018, 30014, 30010
- (d) 30034, 30030, 30026


57. One mole of a monoatomic ideal gas at 1 atm pressure is taken through the p-V cycle as shown below.

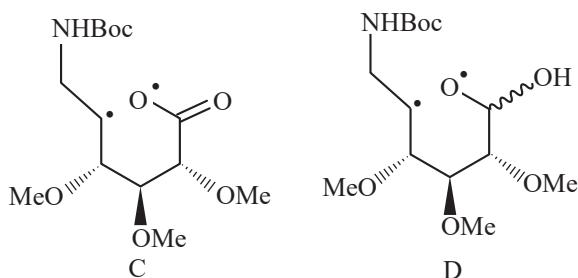
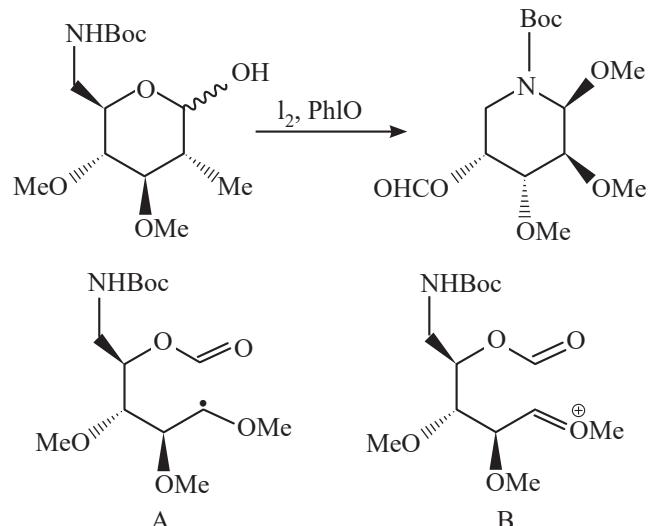
For the process $1 \rightarrow 2$, the reversible work done and the change in enthalpy (in kJ), respectively, are

- (a) -2.27 and 5.67
- (b) 3.40 and 2.27
- (c) 3.40 and -5.67
- (d) -2.27 and 3.40

58. Consider the following reaction.

X is

(a) H^+ (b) H^-
(c) OH^- (d) H_2O



59. The EPR spectrum of $[\text{InH}_3]^0$ [Given: In ($I = 9/2$); H ($I = 1/2$)] is comprised of

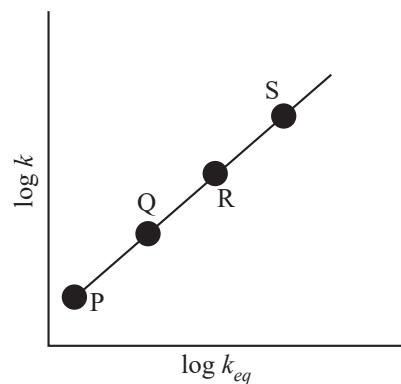
(a) 10 lines of equal intensity where each line further splits into 4 lines with intensity 1: 3: 3: 1.
(b) 4 lines with intensity 1:3:3:1 where each line further splits into 10 lines with equal intensity.
(c) 10 lines with unequal intensity where each line further splits into 4 lines with intensity 1: 3: 3: 1.
(d) 4 lines with intensity 1: 1: 1: 1 where each line further splits into 10 lines with unequal intensity.

60. The free ion ground term, the calculated spin plus orbital magnetic moment value, the calculated spin-orbit magnetic moment value, and the observed magnetic moment value (300 K), for a gaseous $3d^5$ ion, respectively, are

(a) $^6\text{S}_{5/2}$, 5.92BM, 5.92BM, 5.8 – 6.0BM
(b) $^6\text{S}_{5/2}$, 5.92BM, 6.70BM, 5.8 – 6.0BM
(c) $^6\text{S}_{5/2}$, 5.92BM, 5.92BM, 4.8 – 5.0BM
(d) $^6\text{S}_{5/2}$, 5.59BM, 6.70BM, 5.8 – 6.0BM

61. The intermediates involved in the following reaction are

(a) A and B (b) B and C (c) C and D (d) A and D


62. At 100 Pa and 500 K, the number of collisions Ar atoms make on a solid surface of area 1.0 cm^2 in 10 s is closest to [Molar mass of Ar is 40 g mol^{-1} ; assume Ar to behave as a perfect gas]

(a) 1.9×10^{21} (b) 2.1×10^{23}
(c) 3.5×10^{19} (d) 4.7×10^{17}

63. The correct statements about agostic interactions from the following

A. It involves a three-center-two-electron interaction with a C-H bond of the ligand.
B. The C-H bond of the ligand involved in agostic interaction is lengthened.
C. Its presence is identified by an upfield chemical shift of the C-H bond of the ligand.
D. It lowers the pK_a of the C – H bond of the ligand.
(a) A, B, C, and D (b) A, B, and C only
(c) B, C, and D only (d) A, C, and D only

64. The plot shown below is for the rate of acid hydrolysis reaction of $[\text{Co}(\text{NH}_3)_5 \text{X}]^{2+}$ at 25°C , where X is an anionic ligand (F^- , Cl^- , NO_3^- , H_2PO_4^-).

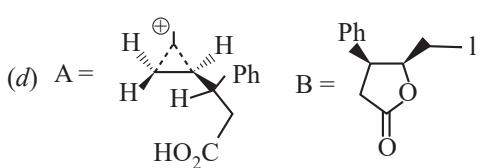
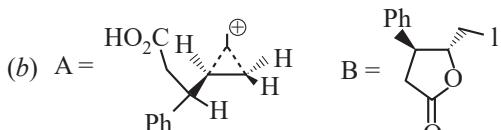
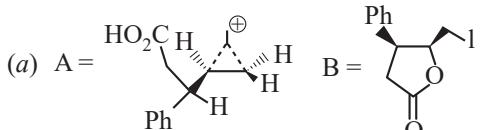
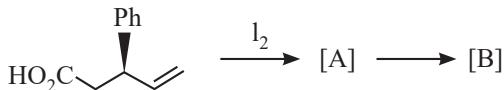
The correct option is

(a) P = F^- , Q = H_2PO_4^- , R = Cl^- , S = NO_3^-
(b) P = Cl, Q = H_2PO_4^- , R = F^- , S = NO_3^-
(c) P = H_2PO_4^- , Q = Cl^- , R = F^- , S = NO_3^-
(d) P = NO_3^- , Q = Cl^- , R = H_2PO_4^- , S = F^-

65. The magnitude of the orbital angular momentum vector of a quantum mechanical system is $\sqrt{6}\hbar$. The smallest possible angle between its orbital angular momentum vector and the z-axis is

(a) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (b) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$

(c) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (d) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$





66. The correct match between the enzymes (Column P) and the biological functions (Column Q) from the table below

Column P	Column Q
A. Cytochrome C Oxidase	i. DNA biosynthesis
B. Tyrosinase	ii. Hydrolysis
C. Purple acid phosphatase	iii. Oxidation of phenols
D. Galactose oxidase	iv. Oxidation of alcohols
E. Ribonucleotide reductase	v. Reduction of O_2 to water

is

(a) A-iii, B-i, C-iv, D-ii, E-v
 (b) A-i, B-ii, C-iii, D-iv, E-v
 (c) A-v, B-iii, C-ii, D-iv, E-i
 (d) A-ii, B-iv, C-v, D-i, E-iii

67. The intermediate A and major product B formed in the following reaction are

68. For a heteronuclear diatomic molecule AB, the unnormalized wavefunctions for HOMO and one of the two degenerate LUMOs, respectively, are

$$\psi_{\text{HOMO}} = 0.9(\phi_{2s}^A + 3\phi_{2p_z}^A) + 0.1\phi_{2p_z}^B$$

$$\psi_{\text{LUMO}} = 0.1\phi_{2p_x}^A + 0.9\phi_{2p_x}^B$$

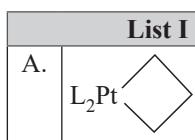
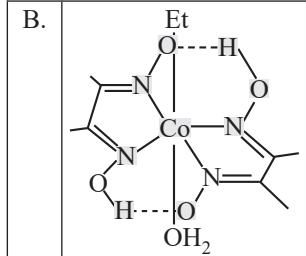
(Atomic orbitals of A and B are denoted by ϕ . The internuclear axis is along the z-direction.)

AB is a

(a) σ -donor through A, π -acceptor through A
 (b) σ -donor through B, π -acceptor through B
 (c) σ -donor through A, π -acceptor through B
 (d) σ -donor through B, π -acceptor through A

69. Double logarithmic plot of the intrinsic viscosity and the molar mass of polymers in solution is linear with slope 3/4. The ratio of molar mass of two solutions of the same polymer of different molar mass is 16. The expected ratio of their measured intrinsic viscosity in an experiment will be

(a) 2 (b) 4 (c) 8 (d) 16



70. Consider the following statements regarding the corrin ring (P) and the porphyrin ring (Q)

A. P is fully conjugated, rigid, and bigger in size than Q.
 B. P is fully conjugated, more flexible and ring size is same as Q.
 C. P is partially reduced, more flexible, and smaller in size than Q.
 D. The flexibility of P supports multiple oxidation states of cobalt.

The correct statements are:

(a) A and B only (b) C and D only
 (c) A and D only (d) B and D only

71. List I contains metal-alkyl compounds which do not undergo β -hydride elimination step, and LIST II gives the reasons.

List I	List II
A.	P. A planar transition state is not accessible
B.	Q. No vacant coordination site on the metal center

ANSWER KEY

1. (c)	2. (a)	3. (a)	4. (d)	5. (c)	6. (a)	7. (a)	8. (a)	9. (c)	10. (a)
11. (b)	12. (b)	13. (d)	14. (c)	15. (d)	16. (c)	17. (a)	18. (c)	19. (a)	20. (b)
21. (b)	22. (a)	23. (a)	24. (a)	25. (c)	26. (a)	27. (b)	28. (c)	29. (c)	30. (a)
31. (a)	32. (c)	33. (a)	34. (a)	35. (a)	36. (a)	37. (d)	38. (a)	39. (c)	40. (d)
41. (a)	42. (d)	43. (b)	44. (d)	45. (c)	46. (d)	47. (a)	48. (a)	49. (c)	50. (a)
51. (b)	52. (a)	53. (d)	54. (d)	55. (a)	56. (a)	57. (a)	58. (c)	59. (a)	60. (a)
61. (a)	62. (a)	63. (a)	64. (a)	65. (b)	66. (d)	67. (c)	68. (c)	69. (c)	70. (b)
71. (a)	72. (b)	73. (d)	74. (a)	75. (b)	76. (b)	77. (b)	78. (b)	79. (c)	80. (a)
81. (b)	82. (c)	83. (a)	84. (b)	85. (a)	86. (c)	87. (a)	88. (b)	89. (a)	90. (a)
91. (b)	92. (c)	93. (b)	94. (b)	95. (c)	96. (a)	97. (b)	98. (a)	99. (a)	100. (b)

SOLUTION

1. (c) In a colloidal solution, charged particles attract counter-ions, forming an electrical double layer (Stern layer + diffuse layer).

The zeta potential is not the potential at the particle surface, but at the shear plane (slipping plane), which separates the firmly bound ions from the more mobile ions in the diffuse layer.

This potential is crucial because it governs the stability of colloids — higher zeta potential (positive or negative) prevents aggregation due to repulsion.

2. (a) Total valence electrons, A = metals ($4 \times 8 = 32$) + CO ligands ($16 \times 2 = 32$) = 64.

If each Os is $18e^-$, total demand (B) = $4 \times 18 = 72$ electrons.

$$\begin{aligned} \text{Number of M - M bonds} &= (B - A)/2 \\ &= (72 - 64)/2 = 4 \end{aligned}$$

3. (a) Moles of C from CO_2 :

$$m_{\text{CO}_2} = 23.26 \text{ mg} = 0.02326 \text{ g}$$

$$n_{\text{C}} = \frac{0.02326}{44.00} = 0.00052882 \text{ mol}$$

Moles of H from H_2O :

$$m_{\text{H}_2\text{O}} = 9.52 \text{ mg} = 0.00952 \text{ g}$$

$$n_{\text{H}} = \frac{0.00952}{18.00} = 0.00052889 \text{ mol}$$

$$n_{\text{H}} = 2 \times n_{\text{H}_2\text{O}} = 0.00105778 \text{ mol}$$

Masses in the original sample (9.83 mg):

$$\begin{aligned} \text{Mass C} &= 0.00052882 \times 12.00 = 0.0063459 \text{ g} \\ &= 6.3459 \text{ mg} \end{aligned}$$

$$\begin{aligned} \text{Mass H} &= 0.00105778 \times 1.00 = 0.0010578 \text{ g} \\ &= 1.0578 \text{ mg} \end{aligned}$$

$$\begin{aligned} \text{Mass O} &= 9.83 - 6.3459 - 1.0578 = 2.4263 \text{ mg} \\ &= 0.0024263 \text{ g} \end{aligned}$$

$$n_{\text{O}} = \frac{0.0024263}{16.00} = 0.00015164 \text{ mol}$$

Mole ratios (divide by smallest, $n_{\text{O}} = 0.00015164$):

$$\text{C: } 0.00052882/0.00015164 = 3.488 \approx 3.5$$

$$\text{H: } 0.00105778/0.00015164 = 6.975 \approx 7.0$$

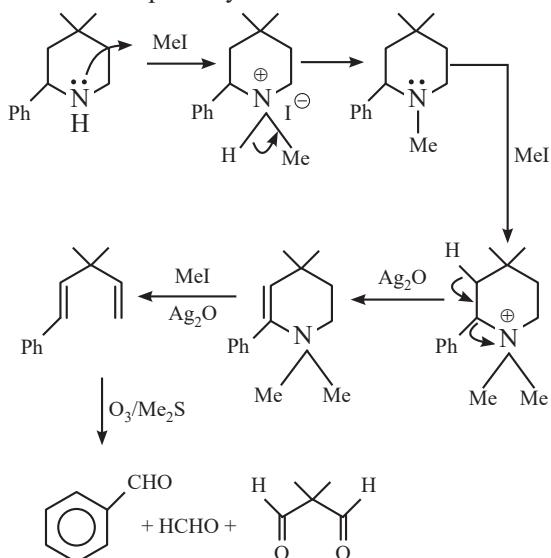
O: 1

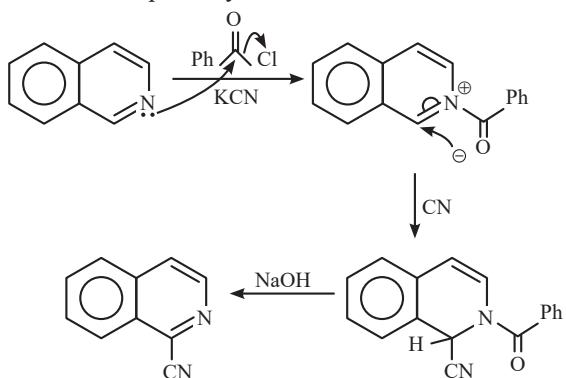

Multiply by 2 to clear the 0.5: empirical formula $\approx \text{C}_7\text{H}_{14}\text{O}_2$.

Empirical mass = $7(12) + 14(1) + 2(16) = 84 + 14 + 32 = 130 \text{ g/mol}$.

This matches the molecular ion peak at $m/z = 130$, so the molecular formula = empirical formula.

Therefore X = 7.


4. (d) The reaction pathway is shown below:


5. (c) The plot is a **monotonically decreasing positive curve**, starting at a maximum for small R and approaching zero as.

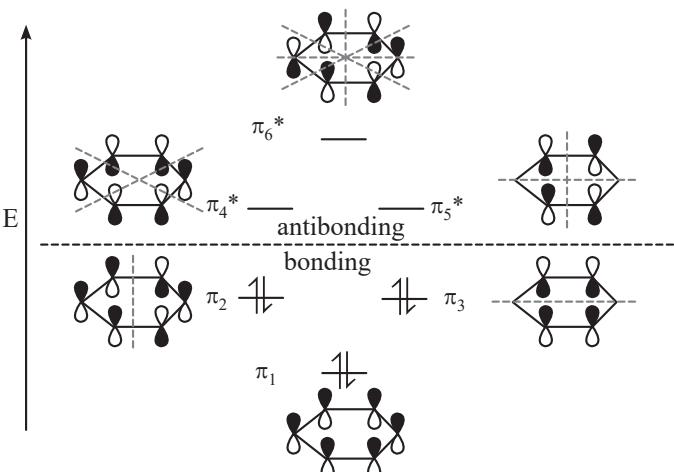
Thus, option (c) is the correct answer.

6. (a) The reaction pathway is shown below:

7. (a) The reaction pathway is shown below:

8. (a) Hemocyanin is dissolved in hemolymph (not inside cells like hemoglobin). Thus, It is an extracellular protein. Thus, option (a) is correct.

It has an oligomeric structure with each subunit containing a pair of two copper atoms as Each oxygen-binding site has a dicopper center (two Cu^+ ions per functional unit). Thus, option (b) is correct.


In deoxyhemocyanin, the two Cu(I) ions are far apart ($\sim 4.6\text{--}4.8 \text{ \AA}$), and move closer ($\sim 3.6 \text{ \AA}$) when O_2 binds. 2.8 \AA is incorrect. Thus, option (c) is incorrect.

O_2 binds as a bridging peroxide (O_2^{2-}), and the intense blue color arises from $\text{O}_2^{2-} \rightarrow \text{Cu(II)}$ charge transfer.

Thus, option (d) is incorrect.

9. (c)

The Pi Molecular Orbitals of Benzene

Thus, the correct representation for the LUMO of benzene is B and C.

10. (a) B (True): C_{60} undergoes addition reactions much more readily (e.g. cycloadditions, Bingel reactions) than electrophilic substitution typical of benzene.

C (True): The curved (spherical) geometry strains the π system and pyramidalizes the carbons, making the $\text{C} = \text{C}$ bonds more reactive toward additions.

D (True): Overall reactivity resembles that of strained alkenes (addition chemistry) rather than aromatic benzene (which favors substitution).

A (False): Although C_{60} is π -conjugated, its curvature and the presence of isolated pentagons reduce delocalization and aromatic stabilization compared with benzene — it does not exhibit greater delocalization than benzene.

Thus, the correct option are (b), (c), and (d) only.

11. (b) Chemolithotrophs obtain energy by oxidizing inorganic substrates.

A. $\text{NH}_3 \rightarrow \text{NO}_2^-$ (ammonia \rightarrow nitrite) — ammonia-oxidizing chemolithotrophs.

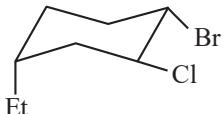
C. $\text{NO}_2^- \rightarrow \text{NO}_3^-$ (nitrite \rightarrow nitrate) — nitrite-oxidizing chemolithotrophs.

D. $\text{H}_2\text{S} \rightarrow \text{S}_8$ (hydrogen sulfide \rightarrow elemental sulfur) — sulfur-oxidizing chemolithotrophs.

B. $(\text{O}_2 \rightarrow \text{H}_2\text{O}_2)$ and E ($\text{CO}_2 \rightarrow \text{CO}$) are reductions or uncommon transformations and are not typical chemolithotrophic energy-yielding oxidations.

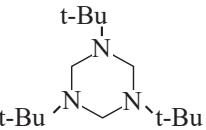

12. (b) For a time-independent Hamiltonian H^\wedge , if $\psi(\text{r})$ is a stationary state (eigenfunction of $\text{H}^\wedge \psi(\text{r}) = \text{E} \psi(\text{r})$)

Then the time-dependent Schrödinger equation gives the solution:


$$\Psi(\text{r}, \text{t}) = \psi(\text{r}) e^{-\text{iEt}/\hbar}$$

DECEMBER 2024

1. The following structures are



and

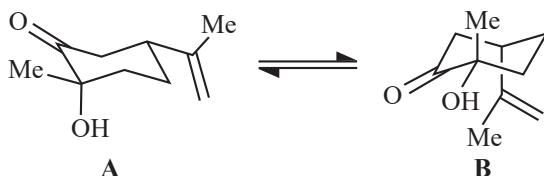
(a) identical (b) enantiomers
 (c) diastereomers (d) constitutional isomers

2. The most stable conformation of the following compound is

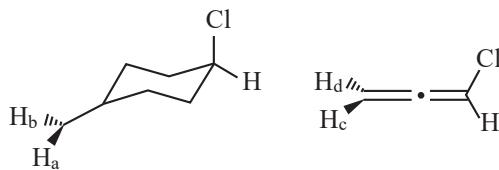
(a)

(b)

(c)

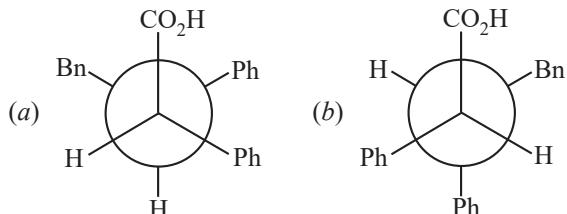
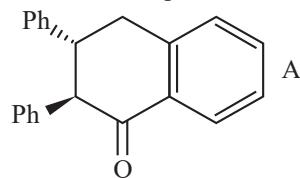

(d)

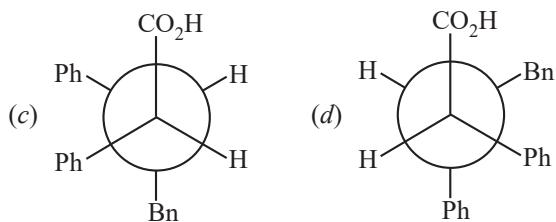
JUNE 2024


3. In the following dithiane, the correct statement about acidity of H_a and H_e protons and the reason for the stability of the carbanion formed by deprotonation is

(a) H_a is more acidic; axial carbanion is delocalised into the σ^* orbital of C-S bond
 (b) H_e is more acidic; equatorial carbanion is delocalised into the σ^* orbital of C-S bond
 (c) H_a is more acidic; axial carbanion is delocalised into the empty 3d orbital of sulfur
 (d) H_e is more acidic; equatorial carbanion is delocalised into the empty 3d orbital of sulfur

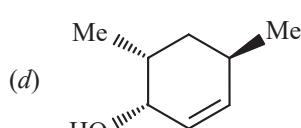
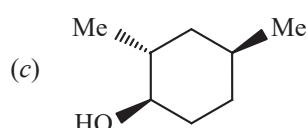
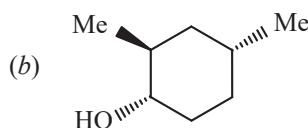
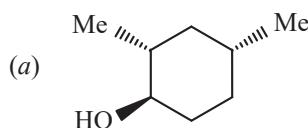
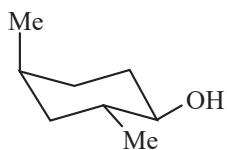
4. The correct statements about the following conformational equilibrium of ketone are

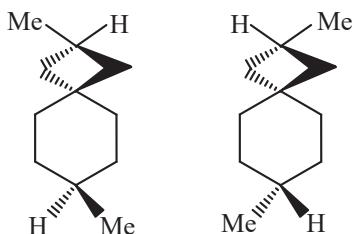




I. A predominates in DMSO due to opposing dipole interaction
 II. B predominates in DMSO due to intramolecular hydrogen bonding
 III. A predominates in isooctane due to opposing dipole interaction
 IV. B predominates in isooctane due to intramolecular hydrogen bonding
 (a) I and III (b) I and IV
 (c) II and III (d) II and IV

5. The correct topicity of H_a and H_c in the following molecules is

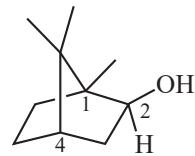
(a) $H_a = H_c = \text{pro-}R$ (b) $H_a = H_c = \text{pro-}S$
 (c) $H_a = \text{pro-}R; H_c = \text{pro-}S$ (d) $H_a = \text{pro-}S; H_c = \text{pro-}R$






6. The conformer of threo-2,3,4-triphenylbutyric acid that gives the product A in the presence of anhydrous HF is



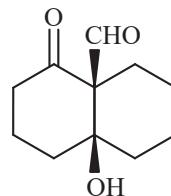
DECEMBER 2023

7. The structure that corresponds to the following compound is



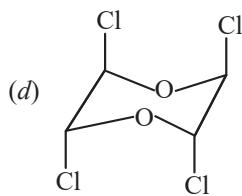
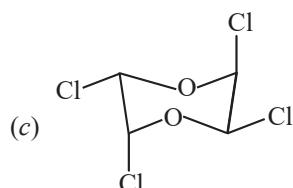
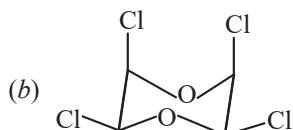
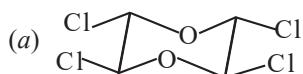
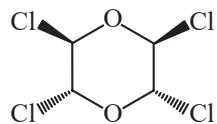
8. The following two molecules are

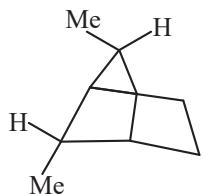
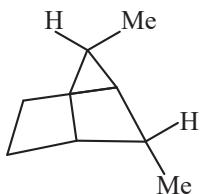
(a) Enantiomers
 (b) Diastereomers
 (c) Homomers (Identical)
 (d) Constitutional isomers


9. The correct absolute configuration for the structure shown below is

(a) 1S, 2S, 4S
 (b) 1S, 2R, 4R
 (c) 1R, 2R, 4S
 (d) 1S, 2S, 4R

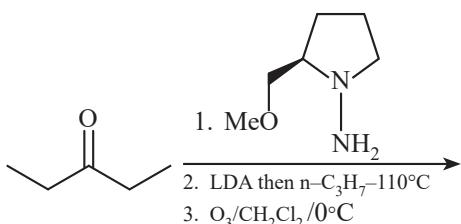
JUNE 2023






10. The absolute configuration of the sterogenic centres present in the following molecule.

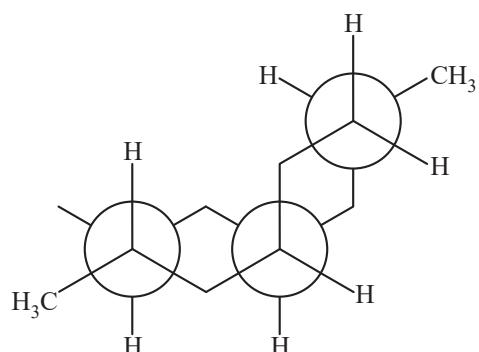


(a) 9R,10S (b) 9R,10R (c) 9S,10S (d) 9S,10R

FEBRUARY 2022

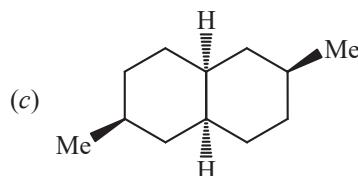
11. The structure that corresponds to the most stable conformation of following

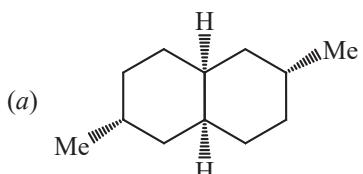


12. The correct relationship between the following structure is that they are

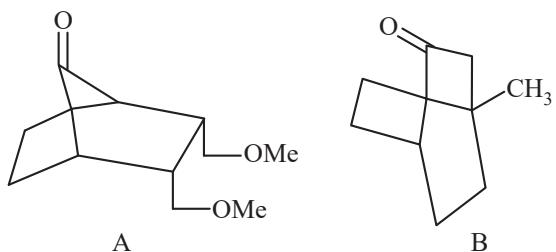

(a) Identical
(b) Enantiomer
(c) Diasteromers
(d) Constitutional Isomer

13. Given the specific rotation $[\alpha]_D^{20}$ of (S) – 4 – methyl – 3-heptanone in hexane as 22° , the specific rotation $[\alpha]_D^{20}$, in hexane of the product A (ee = 98%) obtained from the following enantioselective alkylation reaction is

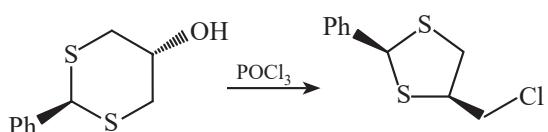
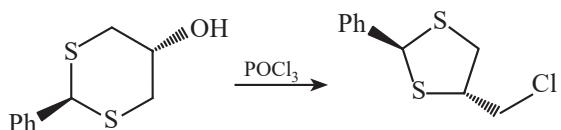





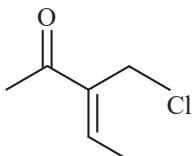
(A)
(a) +21.56
(b) +21.12
(c) -21.56
(d) -21.12


14. The newmann projection given below

corresponds to the compound.

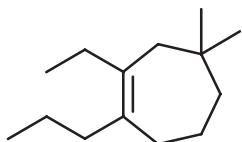



15. The correct relationship b/w the two faces at the C=O group in compounds A and B is


(a) diastereotopic, B = enantiotopic
(b) A = B = enantiotopic
(c) A = enantiotopic, B = diasterotopic
(d) A = B = diasterotopic

16. The pair of reaction depicted below are

(a) Enantioselective reaction
(b) Diastereospecific reaction
(c) Diastereoselective reaction
(d) Enantiospecific reaction

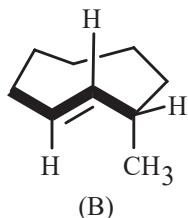
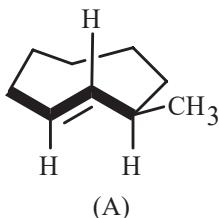

17. The correct IUPAC name of the following compound is

- (a) (E)-3-(chloromethyl) pent-3-en-4-one
- (b) (Z)-3-(chloromethyl) pent-2-en-4-one
- (c) (E)-3-(chloromethyl) pent-2-en-4-one
- (d) (Z)-3-(chloromethyl) pent-3-en-2-one

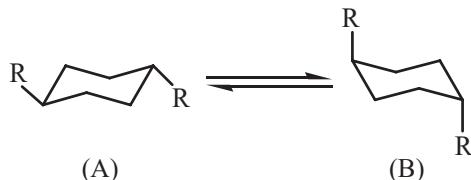
2020

18. The correct IUPAC name for the following molecule is

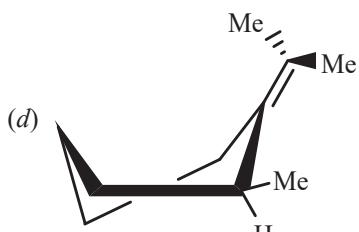
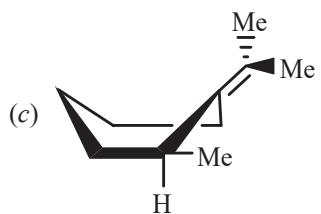
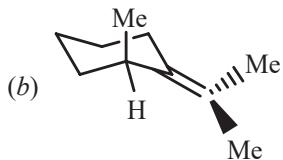
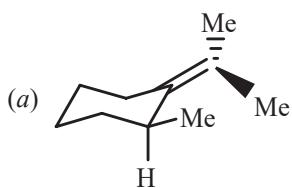
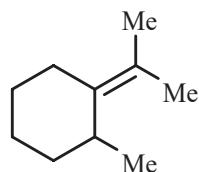
- (a) 1-Propyl-2-ethyl-4, 4-dimethylcyclohept-1-ene
- (b) 2-Ethyl-4, 4-dimethyl-1-propylcyclohept-1-ene
- (c) 3-Ethyl-1, 1-dimethyl-4-propylcyclohept-3-ene
- (d) 1,1-Dimethyl-3-ethyl-4-propylcyclohept-3-ene



19. The stereochemical relationship of Ha and Hb in the following molecule is

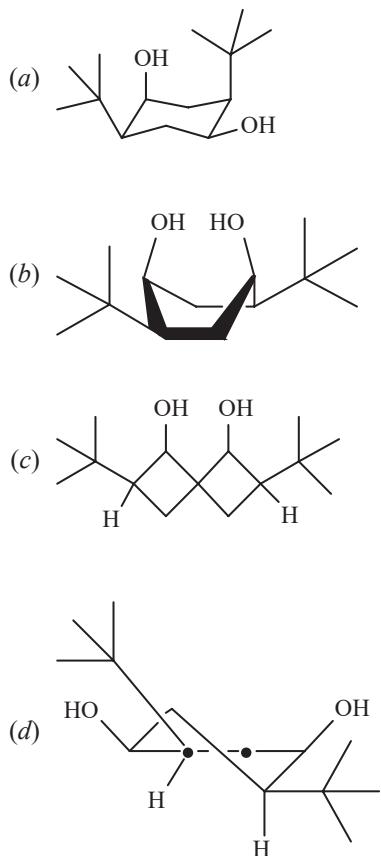
- (a) enantiotopic
- (b) homotopic
- (c) diastereotopic
- (d) constitutionally heterotopic


JUNE 2019

20. The relationship between A and B is

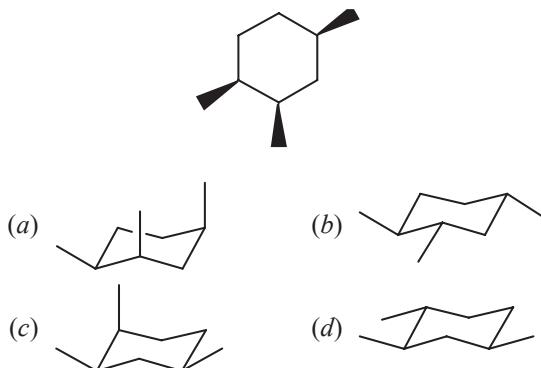





- (a) Homomers (identical)
- (b) Enantiomers
- (c) Diastereomers
- (d) Conformers

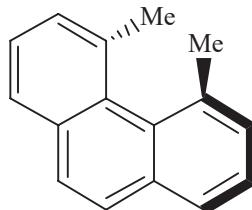
21. In the following equilibrium, conformer B is more stable than A when R is



- (a) Me
- (b) F
- (c) Cl
- (d) OMe

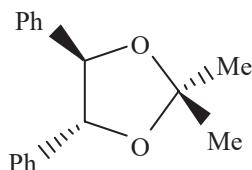
22. The most stable conformation of the following molecule is




32. The specific rotation $[\alpha]_D$ for (S)-(+)-2-butanol is 10° mL/gdm. The observed optical rotation (α_{abs}) of a sample composed of a mixture of (R)- and (S)-2-butanol is -0.45° . If the cell path length is 0.6 dm and the concentration of 2-butanol in the sample is 0.15 g/mL, the percentages of (R) and (S) enantiomers in the sample are

(a) (R) = 25%, (S) = 75%
 (b) (R) = 40%, (S) = 60%
 (c) (R) = 60%, (S) = 40%
 (d) (R) = 75%, (S) = 25%

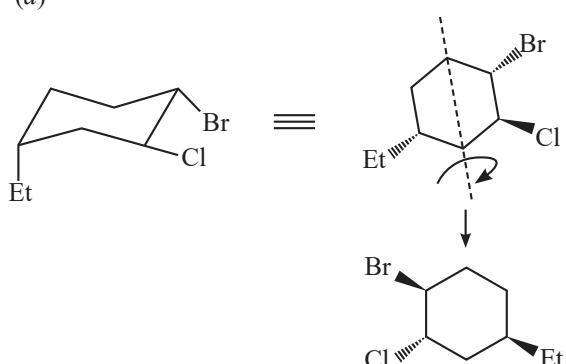
33. Among the structures given below, the most stable conformation for the following compound is



34. The correct statement about the following compound is

(a) compound is chiral and has P configuration
 (b) compound is chiral and has M configuration
 (c) compound is achiral as it possesses C₂-axis of symmetry
 (d) compound is achiral as it possesses plane of symmetry

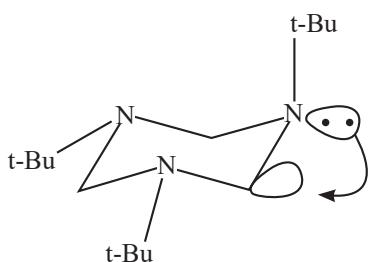
35. Methyl groups in the following compound are


(a) homotopic (b) diasterotopic
 (c) enantiotopic (d) constitutionally heterotopic

ANSWER KEY

1. (a) 2. (b) 3. (b) 4. (b) 5. (a) 6. (b) 7. (c) 8. (c) 9. (a) 10. (a)
 11. (d) 12. (a) 13. (c) 14. (a) 15. (a) 16. (b) 17. (d) 18. (b) 19. (c) 20. (c)
 21. (b) 22. (b) 23. (d) 24. (b) 25. (a) 26. (b) 27. (a) 28. (a) 29. (d) 30. (b)
 31. (c) 32. (d) 33. (c) 34. (a) 35. (a)

SOLUTION


1. (a)

Hence, both structures are identical.

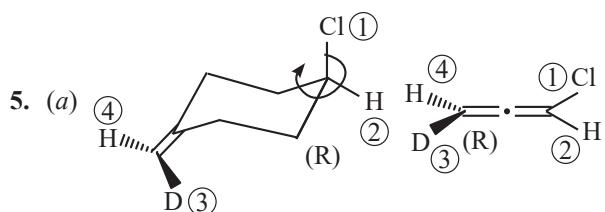
Thus, the correct option is (a).

2. (b) Due to nonbonding to σ^* electron donation, the most stable conformation of the following compound is B.

3. (b) The acidity of protons (H_a) and (H_e) in a dithiolane compound and understanding the stabilization of the resulting carbanion upon deprotonation.

1. Acidity Comparison: The more acidic proton is the one whose removal results in a more stabilized carbanion.

2. Stabilization of Carbanion: The carbanion is stabilized by the delocalization of its negative charge. If the carbanion is formed by removing hydrogen (a) or hydrogen (b), the delocalization of the negative charge into a σ^* orbital (antibonding orbital) is crucial.


- Sulfur has vacant 3d orbitals, but their role is less significant compared to the σ^* orbitals in this context.
- (H_e) is more acidic: When (H_e) is removed, the resulting carbanion is in an equatorial position.
- Stabilization via σ^* Orbital: The negative charge on the carbanion can be delocalized into the σ^* orbital of the adjacent C-S bond, leading to greater stabilization.

Therefore, the correct option is (b): (H_e) is more acidic, and the equatorial carbanion is delocalized into the orbital of the C-S bond.

4. (b) Statement I: A predominates in DMSO due to opposing dipole interaction. In a polar solvent like DMSO, dipole interactions are indeed stabilized. Therefore, this statement is correct. Statement II: B predominates in DMSO due to intramolecular hydrogen bonding. B allows for intramolecular hydrogen bonding, which is a stabilizing factor. In DMSO, this is a stronger effect than the dipole stabilization, so this statement is correct.

Statement III: A predominates in isoctane due to opposing dipole interaction. In a non-polar solvent like isoctane, dipole interactions are not a significant factor, but intramolecular hydrogen bonding in Conformer B would still be favored. Therefore, this statement is incorrect. Statement IV: B predominates in isoctane due to intramolecular hydrogen bonding. Even in a nonpolar solvent like isoctane, intramolecular hydrogen bonding would stabilize Conformer B, making this statement correct.

The correct answer is B (I and IV).

1. **Prochiral Center:** A center where replacing one of the two identical groups leads to a chiral center. To determine if a hydrogen is pro-R or pro-S, you imagine replacing the hydrogen with a higher-priority group (like deuterium) and determine the resulting configuration.

2. **Assigning Priority:** Use the Cahn-Ingold-Prelog rules to assign priority to the groups around the carbon atoms where H_a and H_e are attached.

In this case, after applying the priority rules and checking the configuration:

Both H_a and H_e are determined to be **pro-R**.

The correct answer is **Option (a)**.

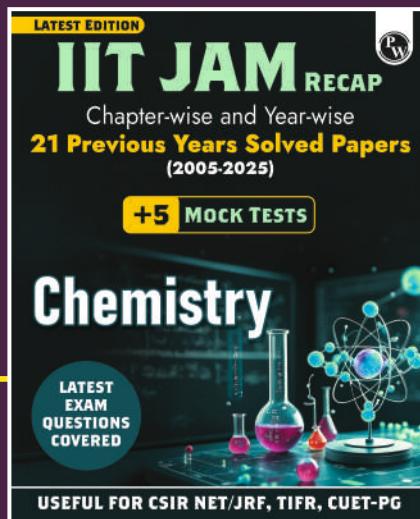
KEY FEATURES

► Latest June 2025 Paper

This book features the June 2025 session questions with detailed explanations, providing fresh insight into the exam's current focus and difficulty level.

► Topic Wise Trend Analysis

Presents an extensive review of exam content and trends over 10 years, illustrating the evolution in question types and subject emphasis.


► Chapterwise Question Segregation

Instead of a broad approach, we break down the questions chapter by chapter, making it easier for you to digest and master each chapter thoroughly.

► Detailed Solutions

Clarifies solutions with comprehensive explanations, breaking down complex answers into understandable steps for better conceptual grasp.

Other Helpful Books

₹ 549/-