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RELATION AND FUNCTIONS
CONCEPT-1
		  A relation R from a set A to a set B is a subset of 

the cartesian product A×B obtained by describing 
a relationship between the first element x and the 
second element y of the ordered pairs in A×B.

CONCEPT-2
		  Function: A function from a set A to a set B is a 

specific type of relation for which every element 
x of set A has one and only one image y in set B. 
We write f : A→B, where f(x) = y.

CONCEPT-3
		  A function f : X → Y is one-one (or injective) if
		  ( ) ( )1 2 1 2 1 2,f f x x x x Xx x= ⇒ = ∀ ∈  only

CONCEPT-4
		  A function f : X→ Y is onto (or surjective) if given 

any y  ∈ Y, ∀ x  ∈ X such that f(x) = y.
CONCEPT-5
		  Classification of function
		  (a) 	 Many-One Function :
		  A function f : A→ B is called many- one, if two 

or more different elements of A have the same 
f- image in B.

		  (b) 	 Into function :
		  A function f : A→ B is into if there exist at least 

one element in B which is not the f-image of any 
element in A.

		  (c) 	 Many One-Onto function :
		  A function f : A→ R is said to be many one- onto 

if f is onto but not one-one.
		  (d) 	 Many One-Into function:
		  A function is said to be many one-into if it is 

neither one-one nor onto.

CONCEPT-6
		  A function f : X→ Y is invertible if and only if f 

is one-one and onto.

TRIGONOMETRIC FUNCTIONS AND 
EQUATIONS

CONCEPT-7
		  General Solution of the equation
		  sinθ = 0 :
		  when sinθ = 0
		  θ =nπ : n ∈ I i.e., n=0, ± 1, ± 2….....
		  General solution of the equation 
		  cosθ =0 :
		  when cosθ =0
		  θ = (2n + 1) π/2, n ∈ I. i.e., n = 0, ± 1, + 2…….
		  General solution of tanθ = 0 is θ = nπ; n ∈ I
CONCEPT-8
		  General solution of the equation
		  (a)	 sinθ =sinα : θ =nπ +(–1)nα ; n ∈ I

		  (b) 	 sinθ = k, where –1 < k < 1. ,
2 2

π π α∈ − 
 

		  	 θ = nπ + (–1)nα where n ∈ I and α = sin–1k

		  (c)	 cosθ =cosα : θ =2nπ ± α, n ∈ I, ( )0,α∈ π

		  (d)	 cosθ = k, where –1 < k < 1.
		  	 θ = 2nπ ± α,wheren ∈ I and α=cos–1k
		  (e)	 tanθ = tanα : θ = nπ + α ; n ∈ I
		  (f)	 tanθ=k, θ=nπ + α, where n ∈ I and α=tan–1 k
		  (g)	 sin2θ =sin2α : θ =nπ±α ; n ∈ I
		  (h)	 cos2θ = cos2α : θ =nπ±α ; n ∈ I
		  (i)	 tan2θ = tan2α : θ =nπ±α ; n ∈ I
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CONCEPT-9
		  sinα + sin (α + β) + sin (α + 2β)+…….to n terms

		

1
sin sin

2 2
; 2

sin( / 2)

n n

n

   − β   α + β            = β ≠ π
β

CONCEPT-10
		  cosα + cos (α + β) + cos (α + 2β)+…….to n terms

		

1
cos sin

2 2
; 2

sin
2

n n

n

   − β   α + β            = β ≠ π
β 

 
 

CONCEPT-11
		  In a triangle ABC, a = BC, b = CA, c = ABside 

lengths

		
tan cot

2 2

AB C b c
b c

− −     =     +     

CONCEPT-12

		

( )( )
sin

2

s b sA c
bc

− −  = 
 

CONCEPT-13

		

( )( )
tan

2 ( – )

s b s c
s s

A
a

− −  = 
 

CONCEPT-14

		  2sin 2sin 2sin 4
R

A B C
a b c abc

= = = =
∆

CONCEPT-15

		
4 sin sin sin

2 2 2
r BA CR      = ⋅ ⋅     

     

CONCEPT-16
		  Projection formula 
		  a = b cos C+ c cos B
CONCEPT-17
		  Maximum value of a sinθ + b cos 2 2a bθ = +  

and minimum value of a sin θ b cos 2 2a bθ = − +

INVERSE TRIGONOMETRIC FUNCTIONS

CONCEPT-18
		  Properties of inverse trigonometric function
		  tan–1x + tan–1y

		

1

1

1

tan , if 1
1

tan , if 0, 0
1

and 1

tan , if 0, 0
1

and 1

x y   xy
xy
x y   x y

xy
  xy

x y   x y
xy

  xy

−

−

−

  +
<  − 

  +
π + > >  − = 

>
  +
−π+ < <  − 

>

	 	 tan–1x – tan–1y

	

1

1

1

tan , if 1
1

tan , if 0, 0 and 1
1

tan , if 0, 0 and 1
1

x y   xy
xy
x y   x y   xy

xy
x y   x y   xy

xy

−

−

−

  −
> −  + 

  −
= π+ > < < −  + 
  −
−π+ < > < −  + 

		  sin–1x + sin–1y

{ }

{ }

{ }

1 2 2
2 2

2 2

1 2 2

2 2

1 2 2
2 2

if 1 , 1
sin 1 1 ,

and 1
or if 0

and 1

sin 1 1 , if 0 , 1

and 1
if 1 , 0

sin 1 1 ,
and 1

  x y  
x y y x

 x y
  xy  

 x y
x y y x   x y

  x y
  x y  

x y y x
 x y

−

−

−

− ≤ ≤
− + −

+ ≤
<


+ >

=  π− − + − < ≤


+ >
− ≤ <

−π− − + −
+ >

		  cos–1x + cos–1y

( )
( )
( )

1 2

1 1 2

1 2

1 1
sin 2 1 ,  if 

2 2
1

2sin sin 2 1 ,  if 1
2

1
sin 2 1 ,  if 1

2

x x x

x x x x

x x x

−

− −

−

 − − ≤ ≤

= π − − ≤ ≤


−π − − − ≤ ≤ −


		

1
2

1 1
2

1
2

2
tan ,  if 1 1

1

2
2 tan tan ,  if 1

1

2
tan ,  if 1

1

−

− −

−

   − < <  − 
  = π + >  − 
  −π + < −  − 

x x
x

xx x
x
x x
x
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QUADRATIC EQUATIONS AND 
INEQUALITIES
CONCEPT-19
		  Roots of a Quadratic Equation : The roots of the 

quadratic equation are given by

		

2 4

2

b b acx
a

− ± −
=

		  Nature of roots: In Quadratic equation ax2 + bx 
+ c = 0. The term b2 – 4ac is called discriminant 
of the equation. It is denoted by Δ or D.

		  (A)	 Suppose a, b, c ∈ R and a ≠ 0
		  	 (i)	 If D > 0 ⇒ Roots are Real and unequal
		  	 (ii)	� If D = 0 ⇒ Roots are Real and equal 

and each equal to –b/2a
		  	 (iii)	� If D < 0 ⇒ Roots are imaginary and 

unequal or complex conjugate.
		  (B) 	Suppose a, b, c ∈ Q and a ≠ 0
		  	 (i)	� If D > 0 and D is perfect square  

⇒ Roots are unequal and Rational
		  	 (ii)	� If D > 0 and D is not perfect square  

⇒ Roots are irrational and unequal.
CONCEPT-20
		  If p + iq (p and q being real) is a root of the 

quadratic equation, where 1i = − , then p – iq 
is also a root of the quadratic equation.

CONCEPT-21
		  Every equation of nth degree (n ≥ 1) has exactly 

n roots and if the equation has more than n roots, 
it is an identity.

COMPLEX NUMBERS
CONCEPT-22
		  Exponential Form: If z = x + iy is a complex 

number then its exponential form is z = reiθ 
where r is modulus and θis amplitude of complex 
number.

CONCEPT-23
	 (i)	 |z1| + |z2| ≥ |z1 + z2|; here equality holds when
		  arg (z1/z2) = 0 i.e. z1 and z2 are parallel.
	 (ii)	 |z1| – |z2| ≥ |z1 – z2 |; here equality holds when 

arg (z1/z2) = 0 i.e., z1 and z2 are parallel.

	 (iii)	 ( )2 2 2 2
1 2 1 2 1 22z z z z z z+ + − = +

CONCEPT-24
		  arg(z1z2) = θ1+ θ2 = arg (z1) + arg (z2)
CONCEPT-25

		  arg ( ) ( )1
1 2 1 2

2

arg arg
z z z
z

 
= − = − 

 
θ θ

CONCEPT-26
		  For any integerk,

		
4 4 1 4 2 4 31, , 1,k k k ki i i i i i+ + += = = − = −

CONCEPT-27
		  |z– z1| + |z – z2| = λ, represents an ellipse if  

|z1 – z2| < λ, having the points z1 and z2 as its foci. 
And if |z1– z2| = λ, then z lies on a line segment 
connecting z1 and z2.

CONCEPT-28
		  Properties of Cube Roots of Unity
	 (i)	 1 + ω + ω2 = 0
	 (ii) 	ω3 = 1
	 (iii)	 1 + ωn + ω2n = 3 (if n is multiple of 3 )
	 (iv) 	1 + ωn + ω2n = 0 (if n is not a multiple of 3).

BINOMIAL THEOREM
CONCEPT-29
		  Greatest binomial coefficients: In a binomial 

expansion binomial coefficients of the middle 
terms are called as greatest binomial coefficients.

	 (a)	 If n is even : When 
2

nr =  i.e., /2
n

nC  takes 
maximum value.

	 (b) 	 If n is odd : 1

2

nr −
=  or 1

2

n + 	 i.e., 

		  1 1

2 2

n n
n nC C− += and take maximum value.

CONCEPT-30
		  Important Expansions:
		  If |x| < 1 and n ÎQ but n∉N, then

	 (a)	 2( l)
(l ) 1

2!
n n nx nx x−

+ = + +

		  ( 1) ..( 1)
.

!
rn n n r x

r
− … − +

+……+ +……

	 (b)	 2( 1)
(1 ) 1

2!
n n nx nx x−

− = − +

		  3( 1)( 2)

3!

n n n x− −
−

		
( 1) ( 1)

( )
!

rn n n r x
r

− … − +
+…+ − +…
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PERMUTATIONS AND COMBINATIONS
CONCEPT-31
		  The number of permutations of n different things, 

taken r at a time, where repetition is allowed,  
is nr.

CONCEPT-32
		  Selection of Objects with Repetition :
		  The total number of selections of r things from n 

different things when each thing may be repeated 
any number of times is n+r+1Cr 

CONCEPT-33
		  Selection from distinct objects :
		  The number of ways (or combinations) of n 

different things selecting at least one of them is  
nC1 + nC2 + nC3 + ... + nCn = 2n – 1. This can also 
be stated as the total number of combination of 
n different things.

CONCEPT-34
		  Selection fromidentical objects :
		  The number of ways to select some or all out of 

(p + q + r) things where pare alike of first kind, 
q are alike of second kind and r are alike of third 
kind is

		  (p + 1)(q + 1)(r + 1) –1
CONCEPT-35
		  Selection when both identical and distinct objects 

are present:
		  If out of (p + q + r + t) things, pare alike one kind, 

q are alike of second kind, r are alike of third 
kind and t are different, then the total number of 
combinations is

		  (p + 1)(q + 1)(r + 1)2t – 1
CONCEPT-36
		  Circular permutations:
	 (a)	 Arrangements round a circular table:
		  The number of circular permutations 

of n different things taken all at a time 

is ( 1)
n

nP n
n

= − !, if clockwise and 

anticlockwise orders are taken as different.
	 (b) 	Arrangements of beads or flowers (all 

different) around a circular necklace 
or garland: The number of circular 

permutations of ‘n’ different things taken 

all at a time is 1
( 1)!

2
n − , if clockwise and 

anticlockwise orders are taken to be some.
CONCEPT-37
		  Sum of numbers :
	 (a)	 For given n different digits a1,a2, a3….

an the sum of the digits in the unit place 
of all numbers formed (if numbers are not 
repeated) is (a1 + a2 + a3 +...+ an) (n – 1)! 

	 (b) 	Sum of the total numbers which can be 
formed with given n different digits a1, 
a2,… an is (a1+a2+a3+…+an)(n – 1)!. 
(111…ntimes)

SEQUENCE AND SERIES
CONCEPT-38
		  Properties related toA.P.:
	 (i)	 Common difference of AP is given byd  

= S2 – 2S1 where S2 is sum of first two terms 
and S1 is sum of first term.

	 (ii) 	 If for an AP sum of p terms is q, sum of  
q terms is p, then sum of (p + q) term is  
(p + q).

	 (iii)	 In an A.P. the sum of terms equidistant from 
the beginning and end is constant and equal 
to sum of first and last terms.

	 (iv) 	 If terms a1, a2,….., an, an+1,…., a2n+1 are in 
A.P., then sum of these terms will be equal 
to (2n + 1) an+1.

	 (v) 	 If for an A.P. sum of p terms is equal to sum 
of q terms then sum of (p + q) terms is zero

	 (vi) 	Sum of n AM’s inserted between a and b is 
equal to n times the single AM between a 

and b i.e. 
1

n

r
r

A nA
=

=∑ where 
2

a bA +
=

CONCEPT-39
		  The geometric mean (G.M.) of any two positive 

numbers a and b is given by ab  i.e., the 
sequence a, G, b is G.P.

		  nGM’s between two given numbers: If in between 
two numbers ‘a’ and ‘b’, we have to insert 
nGMG1, G2,…..Gn then a1, G1,G2,….Gn, b will 
be in GP.



	 1.	 Let f : R → R be such that f (tan x + tan y) + 
 f (tan x – tan y) = 2f (tan x) ⋅ f (tan y) 

and 1
1.

2
f   = − 
 

Then the value of 

		  ( ) ( )( )
20

2

1

1 cos 1 cot sec cosec
=

− ⋅ ⋅ ⋅ +∑
k

k k k f k

	 (a)	 sin 20

sin19
	 (b)	 cos 20

cos19

	 (c)	 sin 20

sin 21
	 (d)	 sin 21

sin 20

	 Sol.	 (c)	 Let tan x = x and tan y = y

		  ⇒	 ( ) ( ) ( ) ( )2+ + − = ⋅f x y f x y f x f y

		  1
1

2
  = − 
 

f

		  Put y = 0 ⇒ 2f (x) [1 – f (0)] = 0
		  ⇒	 f (0) = 1

		  Put 1 1
,

2 2
= =x y

		  f (2) = 1
		  ⇒	 f (k) = 1 for all integer
		  Now

		  ( ) ( )( )
20

2

1

1 cos 1 cot sec cosec
=

− ⋅ ⋅ ⋅ +∑
k

k k k f k

		  ( ) ( )( )
20

2

1

cos 1 1
sin 1

sin cos sin=
= ⋅ ⋅ ⋅

+∑
k

k
k k k f k

		
( ) ( )( )

20
2

1

1
sin 1

sin sin=

 
=  

⋅ +  
∑
k k k f k

		
( )

( )( )
20

1

sin1
sin1

sin sin=

 
=  

⋅ +  
∑
k k k f k

		
( ) ( ){ }

( )( )
20

1

sin 1
sin1

sin sin=

 + −
=  

⋅ +  
∑
k

k k
k k f k

		
( )

20

1

sin1 cot cot 1
k

k k
=

 
=  − +    

 
∑

		  = sin1 (cot1 – cot21)

		
sin 20

sin1
sin1 sin 21

= ⋅
⋅

		
sin 20

sin 21
=

	 2.	 The value of 11
tan

24

π 
 
 

is:

	 (a)	 2 3 2 6+ + − 	 (b)	 2 3 2 6+ + +

	 (c)	 2 3 2 6− − + 	 (d)	 3 2 3 6− −

	 Sol.	 (b)	
11

tan tan
24 2 24

π π π   = −   
   

	 cot
24

π
=

	 Now

	
1 cos 2

cot
sin 2

+ θ
θ =

θ

	 Converting 
24

π into degree i.e., 180 15

24 2

π °
× =

π

	 ⇒	
o

15 1 cos15
cot

2 sin15

+ °  =  ° 

	 Now, ( ) 3 1
cos15 cos 45 30

2 2

+
° = ° − ° =

	 Similarly, 3 1
sin15

2 2

−
° =

CHAPTER

3 Trigonometry

Solved Examples
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	 Sol.	 (c)	 2 25cos 3sin 6sin cos 7θ − θ + θ θ =

	

1 cos 2 1 cos 2
5 3 3sin 2 7

2 2

+ θ − θ   ⇒ − + θ =   
   

	 4cos 2 3sin 2 6⇒ θ+ θ = ,

	 but 2 24cos 2 3sin 2 4 3 5θ + θ ≤ + =

	 \ Solution does not exist.

	 8.	 If sin cos 2 cosθ + θ = θ , then general solution 
for θ is (n ∈ z)

	 (a)	 2
8

n π
π ± 			   (b)	

8
n π
π +

	 (c)	 ( 1)
8

nn π
π + − 	 (d)	 None of these.

	 Sol.	 (b)	 sin cos 2 cos tan 2 1θ + θ = θ ⇒ θ = −

	
8 8

nπ π
⇒ θ = ⇒ π+ , n ∈ z.

	 9.	 Number of solutions of 11 sin x = x is
	 (a)	 4			   (b)	 6
	 (c)	 8			   (d)	 None of these.
	 Sol.	 (d)	 11 sin x = x	. . . (1)
	 On replacing x by –x, we have 11 sin (–x) = –x
	 11sin x x⇒ =

	 So, for every positive solution, we have nega-
tive solution also and x = 0 is satisfying (1), so 
number of solution will always be odd. There-
fore, (d) is appropriate choice.

	 10.	 If 2 2 19
3sin cos

3 9
x x x xπ + π = − + , then x is 

equal to

	 (a)	 1

3
− 			   (b)	

1

3

	 (c)	 2

3
			   (d)	 None of these.

	 Sol.	 (b)	

	 L.H.S. 3sin cos 2sin 2
6

x x x π = π + π = π + ≤ 
 

	 and equality holds for 1

3
x =

	 and R.H.S. 
2

2 2 19 1
2 2

3 9 3
x x x = − + = − + ≥ 

 

	 equality holds if 1

3
x = .

	 Thus L.H.S. = R.H.S. for 1

3
x =  only.

	 11.	 General solution for θ if (n ∈ z)

		  5
sin 2 cos 2

6 6

π π   θ + + θ + =   
   

, is

	 (a)	 7
2

6
n π
π + 	 (b)	 2

6
n π
π +

	 (c)	 7
2

6
n π
π − 	 (d)	 None of these.

	 Sol.	 (a)	 5
sin 2 cos 2

6 6

π π   θ + + θ + =   
   

	 . . . (1)

	 sin 2 1
6

π θ + ≤ 
 

∵ and 5
cos 1

6

π θ + ≤ 
 

\ (1) may holds true iff sin 2
6

π θ + 
 

and 

5
cos

6

π θ + 
 

 both equal to 1 simultane-

ously. First common value of θ is 7

6

π for 
which

	 5
sin 2 sin sin 1

6 2 2

π π π θ + = = = 
 

	 and 5 7 5
cos cos cos 2 1

6 6 6

π π π   θ + = + = π =   
   

	 and since periodicity of sin 2
6

π θ + 
 

is π

	 and periodicity of 5
cos

6

π θ + 
 

is 2π, therefore, 

periodicity of 5
sin 2 cos

6 6

π π   θ + + θ +   
   

 is 2π. 

Therefore, general solution is 7
2

6
n π

θ = π + .

	 12.	 If tan α and tan β are the roots of x2 – 3x – 1 = 
10, then the value of tan (α + β) is

	 (a)	 1

2
			   (b)	 1

	 (c)	 3

2
			   (d)	 None of these.
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	 Sol.	 (c)	 tan , tanα β∵  are the roots of 2 3 1 0x x− − =

	 tan tan 3∴ α + β = and tan tan 1∴ α + β = − .

	
tan tan 3

tan ( )
1 tan tan 2

α + β
∴ α +β = =

− α β
.

	 13.	 Number of solutions of the equation tan x + sec x  
= 2 cos x lying in the interval [0, 2π] is

	 (a)	 0			   (b)	 1
	 (c)	 2			   (d)	 3
	 Sol.	 (c)	 The given equation can be written as

	
2sin 1 2cosx x+ =

	
2sin 1 2(1 sin )x x⇒ + = −

	
22sin sin 1 0x x⇒ + − =

	
1 1 8 1 3 1

sin
4 4 2

x − ± + − ±
= = =

or –1

	
5

,
6 6

x π π
⇒ =

	 Hence, the required number of solutions is 2.

	 14.	 If tan mθ + cot nθ = 0, then the general value of 
θ is (r ∈ I)

	 (a)	 (2 1)

2( )

r
m n
+ π
−

			  (b)	 (2 1)

2( )

r
m n
+ π
+

	 (c)	 r
m n
π
+

			   (d)	 r
m n
π
−

	 Sol.	 (a)	 The given equation can be written as

	 tan cot tan( / 2 )m n nθ = − θ = π + θ

	
,

2
m r n r Iπ ∴ θ = π + + θ ∈ 

 

	 or	 1
( ) (2 1) ,

2
m n r r I− θ = + π ∈

	
(2 1)

,
2( )

r r I
m n
+ π

∴ θ = ∈
−

.

	 15.	 The general solution of the equation 
( 3 1)sin ( 3 1)cos 2− θ + + θ = is (n ∈ I)

	 (a)	 ( 1)
4 12

nn π π
π + − − 	 (b)	 2

4 12
n π π
π ± − 	

	 (c)	 ( 1)
4 12

nn π π
π + − + 	 (d)	 2

4 12
n π π
π ± +

	 Sol.	 (d)	 Let 3 1 cos , 3 1 sinr r+ = α − = α

	 2 2 2( 3 1) ( 3 1) 8r∴ = + + − =  or 2 2r =

	 and 

1
1

3 1 3tan
13 1 1
3

−
−

α = =
+ +

	 or tan tan(45 30 ) tan15α = ° − ° = °

	 15
12

π
∴ α = ° =

	 Using these in the given equation, we get

	 cos( ) 2r θ −α =

	 or 2 2 1
cos cos

12 42 2 2

π π   θ − = = = =   
   r

	 2
12 4

nπ π
∴ θ− = π ±

	 or 2 ,
4 12

n nπ π
θ = π ± + ∈Ι .

	 16.	 One solution of the equation  4 cos2  sin  – 2 
sin2  = 3 sin  is (n ∈ z)

	 (a)	 3
( 1)

10
nx n − π = π + −  
 

	 (b)	 3
( 1)

10
nx n π = π + −  
 

	 (c)	 2
6

x n π
= π ±

	 (d)	 None of these.

	 Sol.	 (a)	 The given equation can be written as
	 2sin [4(1 sin ) 2sin 3] 0θ − θ − θ − =

	 or 2sin [1 2sin 4sin ] 0θ − θ − θ =

	 or 2sin [4sin 2sin 1] 0θ θ + θ − =

	 \ Either sin θ = 0 which gives θ = nπ

	 or 24sin 2sin 1 0θ + θ − = which gives

	
2 4 16 2 2 5 1 5

sin
2 4 8 4

− ± + − ± − ±
θ = = =

×

	
1 5 1 5

,
4 4

− + − −
=
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		  ⇒	 sin 2x (2 cos x –3) = cos 2x (2 cos x –3) ⇒ 
sin 2x = cos 2x 	 ( cos x ≠ 3/2)

		  ⇒	 tan 2x = 1 ⇒ 2x = nπ + 
4

π
 ⇒ x = 

2 8

nπ π
+ , 

n ∈ I.

	 20.	 Solve for x, the equation sin3x + sin x cos x + cos3 

x = 1 (m, n ∈ z)

	 (a)	 2mp			   (b)	 (4n + 1) 
2

π

	 (c)	 Both			   (d)	 None of these
	 Sol.	 (c)	 The given equation is sin3 x + cos3 x + sin x 

cos x = 1
		  ⇒ (sin x + cos x) (sin2 x – sin x cos x + cos2 x) + 

sin x cos x – 1 = 0
		  ⇒ (1 – sin x cos x) [sin x + cos x – 1] = 0
		  Either 1 – sin x cos x = 0 ⇒ sin 2x = 2 which is 

not possible

		  Or, sin x + cos x – 1 = 0 ⇒ cos (x – π/4) = 
1

2
 

⇒ 2
4

x mπ
− = π  ± 

4

π
 

		  ⇒	 x = 2mπ and x = (4n + 1) 
2

π

	 21. 	The equation esin x – e–sin x – 4 = 0 has
	 (a)	 no real solution	 (b)	 one real solution
	 (c)	 two real solutions	 (d)	 can’t be determined

	 Sol.	 (a)	 The given equation can be written as

		  e2 sin x – 4esin x – 1 = 0 ⇒ esin x = 4 16 4

2

± +  = 2 
+ 5

		  ⇒	 sin x = ln (2 + 5 ) or (ln (2 – 5 ) not 
defined as (2 – 5 ) is negative)

		  Now, 2 + 5  > e ⇒ ln (2 + 5 ) > 1 ⇒ sin x > 1
		  Which is not possible. Hence no real solution.

	 22.	 If tan (π cos x) = cot (π sin x), then cos
4

x π − 
 

, 
is

	 (a)	
1

2
			   (b)	

1

2 2

	 (c)	 0			   (d)	 None of these.

	 Sol.	 (b)	 Given that tan (π cos x) = cos (π sin x)

		  or	 tan ( cos ) tan sin
2

x xπ π = − π 
 

		  cos sin
2

x xπ
⇒ π = − π

		  1
cos sin

2
x x⇒ + =

		
1 1 1

cos sin
2 2 2 2

x x⇒ + =

		  1
cos

4 2 2
x π ⇒ − = 

 
.

EXERCISE

SINGLE CORRECT TYPE QUESTIONS 
(01 TO 45)
	 1.	 Value of 4sin(27°) is

	 (a)	
1 1

2 2(5 5) (5 5)+ − −

	 (b)	
1 1

2 2(5 5) (3 5)+ − −

	 (c)	
1 1

2 2(5 5) (5 5)+ + −

	 (d)	
1 1

2 2(5 5) (3 5)+ + −

	 2.	 If tanθ, 2tanθ + 2, 3tanθ + 3 are in G.P., then the 

value of 
2

7 5cot

9 4 sec 1

− θ

+ θ −
 is

	 (a)	 12

5
	 (b)	 33

100
	 (c)	 33

28

− 	 (d)	 12

13

	 3.	 If x is. A.M. of tan
9

π  and 5
tan

18

π and y is A.M. 

of tan
9

π  and 7
tan

18

π , then

	 (a)	 x > y	 (b)	 x = y	 (c)	 2x = y	 (d)	 x = 2y
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	 4.	 2sec 3tan 5sin 7cos 5

2 tan 3sec 5cos 7sin 8

θ + θ + θ − θ +
θ + θ + θ + θ +

 equals to

	 (a)	 tan
2

θ
			   (b)	 cot

2

θ

	 (c)	 sec
2

θ 			   (d)	 cosec
2

θ 
 
 

	 5.	 General solution of inequality 

		  2 2 25
sin sin cos cos2 , ( ) is

4
x x x x n z+ > ∈ .

	 (a)	 5

6 6
n x nπ π
π + < ≤ π +

	 (b)	 5

3 3
n x nπ π
π + < < π +

	 (c)	
4 4

n x nπ π
π + ≤ < π +

	 (d)	 none of these

	 6.	 If tan3

tan

A k
A

= , then value of k can be.

	 (a)	 less then 1

3
		  (b)	 2

	 (c)	 3			   (d)	 1

	 7.	 If ABC is triangle and tan , tan , tan
2 2 2

A B C  are in 

H.P. then minimum value of cot
2

B  is.
	 (a)	 3 	 (b)	 2	 (c)	 3	 (d)	 4

	 8.	 Value of 
1

2

1

cos
n

r

r
n

−

=

π 
 
 

∑  is

	 (a)	
2

n 	 (b)	 1
2

n
+ 	 (c)	 1

2

n
− 	 (d)	 n + 1

	 9.	 If 2sin 1 sin 1 sin
2

A A A  = + + − 
 

, then 
2

A  lies 

		  in the interval (n is integer)

		  (a)	
3

2 ,2
4 4

n nπ π π + π + 
 

		  (b)	 2 ,2
2

n n π π π + 
 

		  (c)	 2 ,2
4 4

n nπ π π − π + 
 

		  (d)	 2 , 2
4

n nπ π − π 
 

	 10.	 If 2 2cos 6sin cos 3sin 2a b≤ θ − θ θ + θ + ≤ , then 
value of a + b is

	 (a)	 2 10 			   (b)	 8
	 (c)	 6			   (d)	 none of these
	 11.	 Number of real solutions of the equation cos7x + 

sin4x = 1 in the interval [–π, π] is
	 (a)	 Two			   (b)	 Three
	 (c)	 Four			   (d)	 None of these
	 12.	 Smallest positive value of x (in degrees) lying in 

[ ]0, 90x∈ °[0, 90°], for which 
		  tan(x + 100°) = tan(x + 50°)⋅tanx⋅tan(x –50°).
	 (a)	 30°	 (b)	 45°	 (c)	 65°	 (d)	 20°
	 13.	 If A, B and C are angles of a triangle, then value 

of 2 2 2tan tan tan
2 2 2

A B C
+ +  is

	 (a)	 ≥ 1			   (b)	 ≤ 1
	 (c)	 1			   (d)	 none of these
	 14.	 Value of 

		
4 4 4 43 5 7

cos cos cos cos
8 8 8 8

π π π π       + + +       
         

is

	 (a)	 5

2
	 (b)	 3

2
	 (c)	 1

2
	 (d)	 1

	 15.	 If tan β = 2 sin α⋅ sin γ⋅ cosec (α + γ), then cot α, 
cot β, cot γ are in

	 (a)	 A.P.	 (b)	 G.P.	 (c)	 H.P.	 (d)	 A.G.P.

	 16.	 The value of cos2 10° – cos 10° cos 50° + cos2 50° 
is

	 (a)	 4

3
	 (b)	 1

3
	 (c)	 3

4
	 (d)	 3

	 17.	 If cos6α + sin6α + k sin2 2α = 1 ∀ α ∈ (0, π/2), 
then the value of k is

	 (a)	 3

4
	 (b)	 1

4
	 (c)	 1

3
	 (d)	 1

8

	 18.	
3 3

2

sin cos cos
2

sin cos 1 cot

θ − θ θ
− −

θ − θ + θ
 tan θ cot θ = –1, if

	 (a)	 0,
2

π θ ∈  
		 (b)	 ,

2

π θ ∈ π  

	 (c)	 3
,

2

π θ ∈ π  
	 (d)	 3

,2
2

π θ ∈ π  
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	 32.	 If 
1

cos(sin ) ,
2

x =  then x must lie in the interval

	 (a)	 ,
4 2

π π 
  

			   (b)	 ,0
4

π −  

	 (c)	 3
,

4

π π  
			   (d) 	None of these

	 33.	 The most general solution for the equation
2

2 2
4 cos 5 2 4 cos 5

2 2 2 2

cos
0  ( )

2

x x

x is x n z

   
− − + − −      

   

− = = ∈
 

	 (a)	 4nπ 			   (b)	
6

nπ

	 (c)	
3

nπ 			   (d)	 None of these

	 34.	 The equation a sinx + cos 2x = 2a – 7 possesses 
a solution if

	 (a)	 a > 6			   (b)	 2 ≤ a ≤ 6

	 (c)	 a > 2			   (d)	 None of these

	 35.	 If tan2x + sec x – a = 0 has at least one solution, 
then complete set of values of a is

	 (a)	 ( ],1−∞ 			   (b)	 [ )1,− ∞ 	

	 (c)	 9
,

4

 ∞ 
			   (d)	 [ )1,∞

	 36.	 If sin(q – x) = a, cos(q – y) = b, then cos (x – y) =

	 (a)	 ( ) ( )2 21 1a b b a− + −

	 (b)	 ab

	 (c)	 ( ) ( )2 21 1a b b a− − −

	 (d)	 2 ab

	 37.	 The product cot 123°∙cot 133°∙cot137°∙cot147°, 
when simplified is equal to

	 (a)	 –1	 (b)	 tan 37°	(c)	 cot 33°	(d)	 1

	 38.	 If (1 + tan1°)∙(1 + tan2°)∙(1 + tan3°)....(1 + tan45°) 
= 2n, then ‘n’ is equal to 

	 (a)	 16			   (b)	 23
	 (c)	 30			   (d)	 None of these	

	 39.	 If 
2 2sin 2 2cos 1 sin 2 2sin4 4 65x x x x+ − ++ = , then 

(sin2x + cos2x) has the value equal to

	 (a)	 –1	 (b)	 2	 (c)	 2 	 (d)	 1

	 40.	 If 3 7 9
cos cos cos cos

20 20 20 20
P π π π π
= ⋅ ⋅ ⋅  and

2 4 8 16
cos cos cos cos cos ,

11 11 11 11 11
Q π π π π π
= ⋅ ⋅ ⋅ ⋅

 

then 
P
Q

 is 

	 (a)	 Not defined	 (b)	 1
	 (c)	 2			   (d)	 5

	 41.	 The solution of the equation 4 44sin cos 1x x+ =  
is:

	 (a)	 2x n= π 			   (b)	
2

x n π
= π +

	 (c)	 x n= π 			   (d)	 None of these

	 42.	 If A, B, C, D are the angles of a cyclic quadrilateral, 
then the value of cos cos cos cosA B C D+ + + is

	 (a)	 4	 (b)	 1	 (c)	 0	 (d)	 –1

	 43.	 In a DPQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q 
+ 3 cos P = 1, then the angle R is equal to

	 (a)	
4

π 	 (b)	 3

4

π 	 (c)	 5

6

π 	 (d)	
6

π

	 44.	 If 1 2tan cotkθ = θ  then 1 2

1 2

cos( )

cos( )

θ − θ
=

θ + θ

	 (a)	 1

1

k
k

+
−

	 (b)	 1

1

k
k

−
+

	 (c)	 1

1

k
k
+
−

	 (d)	 1

1

k
k
−
+

	 45.	
1 1

...
cos cos3 cos cos5

1

cos cos(2 1)n

+ +
α + α α + α

+
α + + α

		  is equal to

	 (a)	 [ ]cosec tan( 1) tannα + α − α 	

	 (b)	 [ ]sec tan( 1) tannα + α − α

	 (c)	 [ ]1
sec tan( 1) tan

2
nα + α − α

	 (d)	 [ ]1
cosec tan( 1) tan

2
nα + α − α
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MULTIPLE CORRECT TYPE QUESTIONS 
(46 TO 71)

	 46.	 If A lies between 270° and 360° and 
7

sin
25

A −
= , 

then

	 (a)	
336

sin2
625

A −
= 	 (b)	

2
cos

2 5

A
=

	 (c)	 1
tan

2 7

A
= − 	 (d)	

2
sin

2 10

A −
=

	 47.	 Solutions of the equation 
		  9cos12(x) + cos2(2x) + 1= 6 cos6x cos 2x + 6 cos6x 

– 2 cos 2x are given by x = (n ∈ z)

	 (a)	
2

n π
π + 			   (b)	 1 4

2
cos

3
n −  
π +   

 

	 (c)	 1 4
2

cos
3

n −  
π −   

 
	 (d)	 None of these

	 48.	 If cos(x – y), cosx and cos(x – y) are in Harmonic 

progression then value of cos sec
2

yx .
	 (a)	 2 			   (b)	 2−

	 (c)	 2			   (d)	 None of these

	 49.	 If ( )1
1

1
2n nP P+ = + , 

		  then 
1 2 3

1
cos

.. to 
nP

P P P

 −
  … ∞ 

 	is equal to

	 (a)	 1	 (b)	 –1	 (c)	 P0	 (d)	
0

1

P

	 50.	 I f  2sin sin cos
6 6

N π π   = − α + α − α   
   

,  t h e n 

( )1.3log N− =  is equal to.
	 (a)	 1			   (b)	 –1
	 (c)	 0			   (d)	 independent of α

	 51.	 If sin cosn n
nT = θ + θ, then 6 4

6

T T
m

T
−

=  holds for 

values of m satisfying (q ∈ R): 

	 (a)	 1
1,

3
m  ∈ −  

	 (b)	 1
0,

3
m  ∈  

	 (c)	 m∈[–1, 0]			  (d)	 1
1,

2
m  ∈ − −  

	 52.	 The equation sin4x + cos4x + sin2x + K = 0 must 
have real solution if:

	 (a)	 K = 0			   (b)	 1
| |

2
K ≤

	 (c)	 3 1

2 2
K− ≤ ≤ 	 (d)	 1 3

2 2
K− ≤ ≤

	 53.	 If x = cos39° + sin57°, y = cos40° + sin58° and 
z = cos41° + sin59°, then: 

	 (a)	 x > y		  	 (b)	 y > z
	 (c)	 x = y = z			   (d)	 x + z > y

	 54.	 The least difference between the roots of the 
equation 4cosx (2 – 3sin2x) + cos2x + 1 = 0 ∀ x 
∈ R is: 

	 (a)	 equal to 
2

π 		 (b)	 greater than 
10

π

	 (c)	 less than 
2

π 	 (d)	 less than 
3

π

	 55.	 Which of the following function have the maximum 
value unity?

	 (a)	 2 2sin cosx x−

	 (b)	 6 1 1
sin cos

5 2 3
x x 
+ 

 
	 (c)	 cos6 x + sin6 x
	 (d)	 cos4 x + sin4 x 

	 56.	 If cos b is geometric mean between sin a and cos 

a, where 0 , ,
2

π
< α β <  then cos 2b = 

	 (a)	 22sin
4

π − − α  
	 (b)	 22cos

4

π − + α  

	 (c)	 22sin
4

π + α  
	 (d)	 22cos

4

π − α  

	 57.	 Consider the statements about 

( )sin 3
sin 0

sin

xy x
x

= ≠ . Which of the following 

is(are) correct?
	 (a)	 The minimum value of y is (–1)
	 (b)	 The maximum value of y is 3	
	 (c)	 The minimum value of y is NOT defined
	 (d)	 The maximum value of y is NOT defined
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	 68.	 If ( )1
( ) sin cos ,k k

kf x x x
k

= +  for k = 1, 2, 3, ....,  

then

	 (a)	 4 6

1
( ) ( )

12
f x f x− = 	(b)	 4

1

8 2
f π  =  

	 (c)	 4

7

12 32
f π  =  

	 (d)	 1(2) 0f <

	 69.	 If secq + tanq = 1, then root of the equation 
(a – 2b + c)x2 + (b  – 2c + a)x + (c – 2a + b) = 0 is

	 (a)	 secq	 (b)	 tanq	 (c)	 sinq	 (d)	 cosq

	 70.	 If sin sin aθ + φ =  and cos cos bθ + φ = , then:

	 (a)	 2 21
cos

2 2
a bθ − φ  = ± +  

	 (b)	 2 2cos
2

a bθ − φ  = ± −  

	 (c)	
2 2

2 2

4
cos

2

a b
a b

θ − φ − −  = ±   +

	 (d)	
2 2 2

cos( )
2

a b+ −
θ − φ =

	 71.	  If 1
sin( ) cos( )

2
x y x y− = + = , then the values 

of x and y lying between 0 and p are given by

	 (a)	 3
,

4 4
x yπ π
= = 	 (b)	 ,

4 12
x yπ π
= =

	 (c)	 5 5
,

4 12
x yπ π
= = 	 (d)	 11 3

,
12 4

x yπ π
= =  

NUMERICAL TYPE QUESTIONS (72 TO 77)

PART-I: DECIMAL TYPE QUESTIONS 
(72 to 77) 

	 72.	 The number of distinct solutions of the equation 
2 4 4 6 65

cos 2 cos sin sin cos 2
4

x x x x x+ + + + =  

in the interval [0, π] is

	 73.	 If the set of all values of x in ,
2 2

π π −  
 satisfying 

| 4sin 2 | 6x + <  is ,
24 24

a bπ π 
   , then value of 

3

a b+  is 

	 74.	 If maximum value of the expression 

		  ( )2 2

1

11sin 24sin cos 29cosθ + θ⋅ θ + θ
 is ‘a’ 

then the value of a is ____. 

	 75.	 Let 
11

2

1

tan
24r

ra
=

π =   ∑  and 
11

1 2

1

( 1) tan ,
24

r

r

rb −

=

π = −   ∑
then the value of (2 )log (2 )b a a b− −  is

	 76.	 Number of values of θ lying in the interval 

,
2 2

π π −  
 the equation (1 – tanq) (1 + tanq) sec2q 

+ 
2tan2 θ  = 0 is

	 77.	 If 9 5
56,

cos sin

a b
+ =

θ θ
 

2 2

9 sin 5 cos
0

cos sin

a bθ θ
− =

θ θ
 and 

if the value of ( ) ( ) ( )
32 2

2
3 39 5 8 ,a b k + =  

 then k is

PART-II: INTEGER TYPE QUESTIONS 
(78 to 89)
	 78.	 The angle A of the ΔABC is obtuse x = 2635 

–tan B tan C. If [x] denotes the greatest integer 
function, the value of [x] – 2630 is

	 79.	 If 
1 1

sin20 3cos20
k− =� � , 

		  then 18k4 + 162k2 –1371 is
	 80.	 If α + β = γ and tanγ = 22, a is the arithmetic and b 

is the geometric mean respectively between tanα 

and tanβ, the value of 
3

2 3
1330

(1 )

a
b

−
−

 is equal to

	 81.	 Value of sin212° + sin2(21°) + sin2(39°) + 
sin2(48°) – sin2(9°) – sin2(18°) is

	 82.	 In a triangle ABC, a < cos A + cos B + cos C < b, 
then value of a + 2b is

	 83.	 Given that the angles α, β, γ are connected by the 
relation 2 tan2α tan2β tan2γ + tan2α tan2β + tan2β 
tan2γ + tan2γ tan2α = 1. Find the value of sin2α + 
sin2β + sin2γ.

	 84.	 If sec A tan B + tan A sec B = 91, then the value 
of (sec A sec B + tan A tan B)2 – (91)2 is equal to

	 85.	 If the sum of all solution of the equation tan2 33x 
= cos2x – 1 lying in the interval [0, 314] is kπ, 
then the value of k/10, is 
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	 86.	 Let M denotes the maximum value of expression 

( ) 7 6cos 2
,

4 3cos 2
f R+ θ
θ = θ ∈

− θ
 and m denotes the 

minimum value of expression g(θ) = 2sin2θ + 

cos4θ + 3, θ ∈ R. Then the value of (M + m) is

	 87.	 The number of solution of the equation 

( )sin 6 3 sin 6 3
2

x xπ π − + + =  
 in [0, 2p], is

	 88.	 Number of solution of the equation 

( ) ( )

2 2sin cos 2 tan cot 3,

0,6 , 2 1 ,
2

x x x x

x n n

+ + + =

π ∈ π − π + 
 

where n ∈ I is 

	 89.	 Let f(x) = ax2 + bx + c where a, b, c are integers.
3 3 5 5

If sin sin sin sin sin sin
7 7 7 7 7 7

cos
7

f

π π π π π π
⋅ + ⋅ + ⋅

π =   

 

then the value of f(2) is 

MATRIX MATCH/LIST TYPE QUESTIONS

PART-I: MATRIX TYPE QUESTIONS 
(90 to 92)

	 90.	 Match the columns.

Column-I Column-II

I. Value of 
1

cot7
2

�
 is P.  2 3 4 6+ + +

II. Value of 
1

tan 7
2

 
  
 

�

is Q. ( )1
4 2 2 4 2 2

4
+ + −

III. Value of 
1

sin 67
2

 
  
 

�

is R. ( )1
 4 2 2 4 2 2
4

+ − −

IV. Value of 
1

cos 67
2

 
  
 

�

is S.  6 4 3 2− − +

T.  2 3 4 5+ + +

	 91.	 Match the column.

Column-I Column-II

I. The number of real roots 
of the equation is cos9x + 
sin4x = 1 in (–p, p)

P. 1

II. The value of 3 cosec 
20° – sec 20° is

Q. 4

III. 4cos36° – 4cos72° + 
4sin18°cos36° equals

R. 0

IV. The number of values 
of [ 2 , 2 ]x ∈ − π π , which 
satisfy cosecx = 1 + cotx

S. 3

T. 2

	 92.	 Match the columns.
Column-I Column-II

I. The number of 
solutions of the 
equation 

1
| cot | cot is

sin
(0 )

x x
x

x

= +

< < π  

P. No 
solution

II.
If 1

sin sin
2

θ + φ =  and 

cos cos 2θ + φ = , then 

value of cot
2

θ + φ 
  

 is

Q. 1

3

III. The value of 
2sin sin sin

3 3

π π   α + −α −α       
is

R. 1

IV. If tan q = 3 tan f, then 
maximum value of 
tan2(q – f) is

S. 2

T. 3/4
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PART-II: LIST TYPE QUESTIONS 
(93 to 95)
	 93.	 Match the columns.

Column-I Column-II
I. The least difference 

between the roots, 
in the first quadrant 

0 ,
2

x π ≤ ≤  
 of the 

equation 
4cosx(2 – 3sin2x) + 
(cos2x + 1) = 0 is

P. 2

II. Number of positive 
values of x for which 
2cosx, |cosx| and 
1 – 3cos2 x are in G.P., 
lying in [0, π] is

Q.

6

π

III. The values of x between 
0 and 2π which 
satisfy the equation 

2sin 8cos 1x x =  are 
in A.P. with common 

difference d, then 4d
π

 is

R.

3

π

IV. The number of solution 
of the equation 

(1 sin 2 )| sin cos |

2, ,  is

+ θθ + θ
= −π ≤ θ ≤ π

S. 1

	 (a)	 (I-Q); (II-P); (III-S); (IV-P)
	 (b)	 (I-P); (II-P); (III-S); (IV-Q)
	 (c)	 (I-P); (II-P); (III-Q); (IV-S)
	 (d)	 (I-P); (II-Q); (III-P); (IV-S)
	 94.	 Match the columns.

Column-I Column-II
I. The minimum value of 

sec2 x + cosec2 x – 4 is
P. 3

II. The maximum value of 
||sin x | – 4| – 3 is

Q. 4

III. 10log 3
10

10 10

10

10 log tan1

log tan 2 log tan 3

.... log tan89 equals

+ °+
° + °

+ + °  

R. 1

IV. If cosx + cos2x = 1, then 
value of 4 sin2x (2 – cos2x)

S. 0

	 (a)	 (I-S); (II-R); (III-Q); (IV-P)
	 (b)	 (I-S); (II-R); (III-P); (IV-Q)
	 (c)	 (I-S); (II-Q); (III-R); (IV-P)
	 (d)	 (I-P); (II-Q); (III-R); (IV-S)
	 95.	 Match the columns.

Column-I Column-II
I.

Let x and 0,
2

y π ∈    

such that cos2(x – y)  
= sin 2x × sin 2y, then 
x + y = 

P.

4

π

II.
Let , , 0,

4
x y z π ∈  

 

such that 1

2
(1 – tan x) 

(1 – tan y) (1 – tan z)
= 1 – (tanx + tany 
+ tanx), then x + y + z = 

Q.

3

π

III.
Let , 0,

2
x y π ∈  

 such 

that sinx cosy + siny 
cosz + sinz cosx = then 
x + y + z is

R.

2

π

IV.
Let , , 0,

2
x y z π ∈  

 

such that 3cos2x + 
2cos2y = 4 and then 
2

( 2 )
3

x y+  is 

S. 3

4

π

	 (a)	 (I-P); (II-S); (III-Q); (IV-R)
	 (b)	 (I-P); (II-R); (III-Q); (IV-S)
	 (c)	 (I-R); (II-P); (III-Q); (IV-S)
	 (d)	 (I-R); (II-P); (III-S); (IV-Q)

COMPREHENSION TYPE QUESTIONS 
(96 TO 106)

Comprehension-1
In a triangle ABC, if cotA + cotB + cotC = cotθ, then
	 96.	 sin(A – θ) sin(B – θ) sin(C  – θ) equals to
	 (a)	 sin3θ			   (b)	 cos3θ
	 (c)	 tan3θ			   (d)	 cot3θ
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	 97.	 Possible value of θ is
	 (a)	 45°	 (b)	 35°	 (c)	 25°	 (d)	 55°

Comprehension-2
If θ is an angle measured in radian θ∈ [0, 2π], then θr 
is length of arc AB, of circle of radius r, subtending 
angle θ at the centre O, of the circle. Area of sector 

OAB is 21
.

2
r θ

	 98.	 The angle between minute hand and hour hand of 
a clock at “half past 4” equals

	 (a)	 42°			   (b)	 43°
	 (c)	 44°			   (d)	 None of these
	 99.	 The wheel of a train is 1 meter in diameter and it 

makes 5 revolutions per second. Then the speed 
of the train is approximately equal to

	 (a)	 57 km/hr			   (b)	 66 km/hr	
	 (c)	 68 km/hr			   (d)	 42.6 km/hr
	100.	 Two lines drawn through a point on the 

circumference of a circle divide the circle into 
three regions of equals area.  The two lines 
also mirror each other on the diameter passing 
through the point of intersection. Then the angle 
θ between the lines is given by 

	 (a)	 3θ + 3 sin θ = π 	 (b)	 6θ + 3 sin θ = π 	

	 (c)	 2θ + sin θ = π 	 (d)	 θ + sin θ = 
2

π  

Comprehension-3
We know that sinx ≤ 1 and siny ≤ 1 for all x, y So, sinx 
+ siny ≤ 2 for all x and y i.e., sinx + siny = 2 if and only 
if sinx = 1 = siny

so, 2
2

x n π
= π +  and 2

2
y m π
= π + , m, n ∈ z

In general, on or more of the following extreme value 
conditions
	 I.	 1 sin 1 | sin | 1 sin 1x x x− ≤ ≤ ⇒ ≤ ⇒ ≤

	 II.	 21 cos 1 | cos | 1y and cos 1x x x− ≤ ≤ ⇒ ≤ ≤

	 III.	 2 2 2 2

2 2

( sin cos )

| sin cos |

a b a x b x a b

a x b x a b

− + ≤ + ≤ +

⇒ + ≤ +

On the basis of above passage, answer the following 
questions:
	101.	 Number of roots of the equation cos7x + sin4x = 1 

in the interval [0, 2p] is
	 (a)	 0	 (b)	 1	 (c)	 2	 (d)	 4

	102.	 The smallest positive number p for which the 
equation cos (p sinx) = sin(p cosx) has a solution 
in [0, π] is

	 (a)	
4

π 	 (b)	
3

π 	 (c)	
4 2

π
	 (d)	

2 2

π

Comprehension-4
Consider f, g and h be three valued functions defined 
on R. Let ( ) sin 3 cos , ( ) cos3 sinf x x x g x x x= + = +  
and h(x) = f 2(x) + g2(x).
	103.	 General solution of equation h(x) = 4 is (n∈I)

	 (a)	 (4 1)
8

n π
+ 		  (b)	 (8 1)

8
n π
+

	 (c)	 (2 1)
4

n π
+ 		  (d)	 (7 1)

4
n π
+

	104.	 Number of point(s) where graph of the two 
functions y = f(x) and y = g(x) interesect in [0, p] is

	 (a)	 2	 (b)	 3	 (c)	 4	 (d)	 5

Comprehension-5
If n be a natural number define polynomial fn(x) of nth 
degree as follows: 
fn(cosq) = cosnq i.e.,  f2(x) = 2x2 – 1, f3(x) = 4x3 – 3x, 
Then

	105.	 ( ) ( )10 10
2 21 1x x x x+ − + − −  is equal to

	 (a)	 f10(x)			   (b)	 f11(x) + f9(x)
	 (c)	 f11(x)			   (d)	 2 f10(x)

	106.	 f6(x) is equal to
	 (a)	 36x6 – 48x4 + 18x2 – 5
	 (b)	 32x6 – 48x4 + 18x2 – 1
	 (c)	 36x6 – 45x4 + 18x2 – 8
	 (d)	 36x6 – 48x4 + 18x2 – 7
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1. (b) 2. (b) 3. (c) 4. (a) 5. (a) 6. (a) 7. (a) 8. (c) 9. (a)	 10.	 (b)

11. (b)	 12.	 (a)	 13.	 (a)	 14.	 (b)	 15.	 (a)	 16.	 (c)	 17.	 (a)	 18.	 (b)	 19.	 (a)	 20.	 (b)

21. (c)	 22.	 (b)	 23.	 (b)	 24.	 (b)	 25.	 (d)	 26.	 (a)	 27.	 (c)	 28.	 (b)	 29.	 (b)	 30.	 (c)

31. (d)	 32.	 (a)	 33.	 (a)	 34.	 (b)	 35.	 (b)	 36.	 (a)	 37.	 (d)	 38.	 (b)	 39.	 (a)	 40.	 (c)

41. (c)	 42.	 (c)	 43.	 (d)	 44.	 (a)	 45.	 (d)	 46.	 (a, d)	 47.	 (a,b,c)	48.	 (a, b)	 49.	 (c)	 50.	 (b,d)

51. (c, d)	 52.	 (a, b, c) 53. (a, b, d) 54. (b, c, d) 55. (a, b, c, d)	 56.	 (a, b)

57. (a, d)	 58.	 (b, c)	 59.	 (a, b, c, d) 60. (a, b, d) 61. (b, d)	 62.	 (b, c)	 63.	 (b, c)

64. (b, c)	 65.	 (a, b, d) 66. (a, b)	 67.	 (b, d) 	 68.	 (a, c)	 69.	 (a, d)	 70.	 (a, d)	 71.	 (b, d)

72. (4.00)	 73.	 (2.67)	 74.	 (0.20)	 75.	 (2.00)	 76.	 (4.00)	 77.	 (7.00)	78.	 (4)	 79.	 (5)	 80.	 (1)	 81.	 (1)

82. (4)	 83.	 (1)	 84.	 (1)	 85.	 (495)	 86.	 (17)	 87.	 (13)	 88.	 (0)	 89.	 (9)

90. (I-P); (II-S), (III-Q), (IV-R) 91. (I-S); (II-Q); (III-S); (IV-T)

92. (I-R); (II-P); (III-T); (IV-Q) 93. (a)	 94.	 (b)	 95.	 (d)	 96.	 (a)	 97.	 (c)	 98.	 (d)

99. (a)	 100.	 (a)	 101.	 (d)	 102.	 (d)	 103.	 (a)	 104.	 (c)	 105.	 (d)	 106.	 (b)
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