

NTA

CUET (UG)

68

(2025-22)

PAST YEARS
SOLVED PAPERS
&
MOCK TESTS

Science Stream

Physics - 15+2

Chemistry - 15+2

Biology - 15+2

Mathematics - 15+2

3200+
MCQs

WITH
FREE
ONLINE CBT

2 Mock Tests per Subject as per NTA CUET Latest Pattern & Syllabus

Subject-wise Combo of 15 Past Solved Papers from 2025-2022 (Physics, Chemistry, Biology & Mathematics)

Detailed Explanation of Each Question

Trend Analysis of NTA CUET PYQs (2025-2023)

Syllabus for CUET Biology

Note: There will be one Question Paper which will have 50 questions. All questions are compulsory.

Syllabus

- **Unit-I:** Reproduction
Sexual Reproduction in Flowering Plants, Human Reproduction, Reproductive Health.
- **Unit-II:** Genetics and Evolution
Principles of Inheritance and Variation, Molecular Basis of Inheritance, Evolution
- **Unit-III:** Biology and Human Welfare
Human Health and Disease, Microbes in Human Welfare
- **Unit-IV:** Biotechnology and its Applications
Biotechnology: Principles and Processes, Biotechnology and its Applications
- **Unit-V:** Ecology and Environment
Organisms and Populations, Ecosystem, Biodiversity and Conservation

Biology Paper Analysis

Chapter-wise Number of Questions Analysis of NTA CUET Papers

S. No.	Name of the Chapter	2024		2025	
		19 th July	15 th May	3 rd June	15 th May
1.	Sexual Reproduction in Flowering Plants	3	3	3	3
2.	Human Reproduction	5	3	4	4
3.	Reproductive Health	3	5	3	3
4.	Principles of Inheritance and Variation	4	3	3	3
5.	Molecular Basis of Inheritance	4	5	2	4
6.	Evolution	3	4	5	3
7.	Human Health and Diseases	4	4	6	5
8.	Microbes in Human Welfare	3	3	4	5
9.	Biotechnology: Principles and Processes	3	4	5	5
10.	Biotechnology and its Application	5	4	5	5
11.	Organisms and Populations	5	3	0	3
12.	Ecosystem	4	4	8	3
13.	Biodiversity and Conservation	4	5	2	4

Contents

Physics

NTA CUET Solved Papers 1-138

1. NTA CUET Paper (2 nd June 2025, Shift-1)	1
2. NTA CUET Paper (2 nd June 2025, Shift-2)	11
3. NTA CUET Paper (28 th May 2025, Shift-1)	20
4. NTA CUET Paper (27 th May 2025, Shift-2)	31
5. NTA CUET Paper (26 th May 2025, shift 2)	40
6. NTA CUET Paper (14 th May 2025, Shift-1)	49
7. NTA CUET Paper (14 th May 2025, Shift-2)	58
8. NTA CUET Paper (13 th May 2025, Shift-1)	67
9. NTA CUET Paper (19 th July 2024)	75
10. NTA CUET Paper (16 th May 2024)	84
11. NTA CUET Paper (22 nd May 2023)	96
12. NTA CUET Paper (21 st May 2023)	105
13. NTA CUET Paper (30 th August 2022, Slot-2)	115
14. NTA CUET Paper (23 rd August 2022, Slot-1)	123
15. NTA CUET Paper (6 th August 2022, Slot-2)	131

Mock Test Papers 139-147

• Mock Test Paper-1	139
• Mock Test Paper-2	144

→ Select **Test**
→ On Free Mock Test Paper
→ Press **Start**

Scan the QR code For FREE Online CBT

Chemistry

NTA CUET Solved Papers

148-268

1. NTA CUET Paper (3 rd June 2025, Shift-2)	148
2. NTA CUET Paper (28 th May 2025, Shift-1)	156
3. NTA CUET Paper (19 th May 2025, Shift-2)	165
4. NTA CUET Paper (15 th May 2025, Shift-2)	175
5. NTA CUET Paper (14 th May 2025, Shift-2)	184
6. NTA CUET Paper (14 th May 2025, Shift-1)	192
7. NTA CUET Paper (13 th May 2025, Shift-1)	200
8. NTA CUET Paper (19 th July 2024, Shift-2)	208
9. NTA CUET Paper (29 th May 2024, Shift-1)	214
10. NTA CUET Paper (15 th May 2024, Shift-1)	221
11. NTA CUET Paper (22 nd May 2023, Online Paper)	229
12. NTA CUET Paper (21 st May 2023, Online Paper)	238
13. NTA CUET Paper (30 th August 2022, Shift-2)	246
14. NTA CUET Paper (21 st August 2022, Shift-2)	255
15. NTA CUET Paper (18 th August 2022, Shift-1)	262

Mock Test Papers

269-276

• Mock Test Paper-1	269
• Mock Test Paper-2	273

→ Select **Test**
→ On Free Mock Test Paper
→ Press **Start**

Scan the QR code For FREE Online CBT

Mathematics

NTA CUET Solved Papers

277-424

1. NTA CUET Paper (2 nd June 2025, Shift-1)	277
2. NTA CUET Paper (27 th May 2025, Shift-1)	287
3. NTA CUET Paper (22 nd May 2025, Shift-2)	298
4. NTA CUET Paper (19 th May 2025, Shift-1)	308
5. NTA CUET Paper (15 th May 2025, Shift-2)	318
6. NTA CUET Paper (19 th July 2024, Online Paper)	328
7. NTA CUET Paper (16 th May 2024, Shift-2B)	341
8. NTA CUET Paper (30 th May 2023, Shift-2)	351
9. NTA CUET Paper (25 th May 2023, Shift-1)	363
10. NTA CUET Paper (24 th May 2023, Shift-3)	372
11. NTA CUET Paper (23 rd May 2023, Shift-1)	381
12. NTA CUET Paper (21 st May 2023, Shift-2)	389
13. NTA CUET Paper (17 th August 2022, Slot-1)	398
14. NTA CUET Paper (10 th August 2022, Slot-1)	407
15. NTA CUET Paper (8 th August 2022, Slot-1)	416

Mock Test Papers

425-435

• Mock Test Paper-1	425
• Mock Test Paper-2	431

→ Select **Test**
→ On Free Mock Test Paper
→ Press **Start**

Scan the QR code For FREE Online CBT

Biology

NTA CUET Solved Papers

436-548

1. NTA CUET Paper (3 rd June 2025, Shift-II)	436
2. NTA CUET Paper (28 th May 2025, Shift-II)	444
3. NTA CUET Paper (27 th May 2025, Shift-II)	451
4. NTA CUET Paper (26 th May 2025, Shift-II)	459
5. NTA CUET Paper (15 th May 2025, Shift-II)	467
6. NTA CUET Paper (14 th May 2025, Shift-I)	475
7. NTA CUET Paper (19 th July 2024, Shift-I)	482
8. NTA CUET Paper (29 th May 2024, Shift-I)	490
9. NTA CUET Paper (15 th May 2024, Shift-II)	497
10. NTA CUET Paper (30 th May 2023)	504
11. NTA CUET Paper (27 th May 2023)	512
12. NTA CUET Paper (26 th May 2023, Shift-I)	520
13. NTA CUET Paper 30 th August 2022, Shift-II)	527
14. NTA CUET Paper (23 rd August 2022, Shift-II)	534
15. NTA CUET Paper (20 th August 2022, Shift-I)	542

Mock Test Papers

549-560

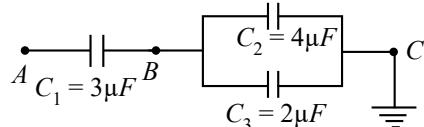
• Mock Test Paper-1	549
• Mock Test Paper-2	555

→ Select **Test**
→ On Free Mock Test Paper
→ Press **Start**

Scan the QR code For FREE Online CBT

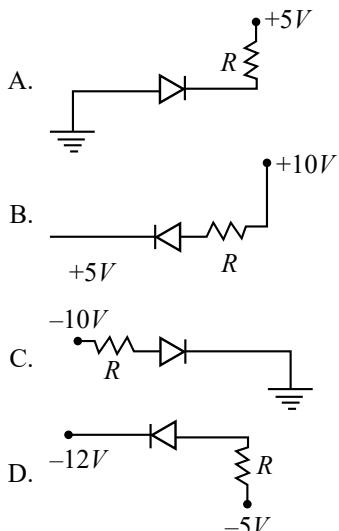
PHYSICS

NTA CUET PAPER (2ND JUNE 2025, SHIFT-1)


Instructions

There will be 50 questions. All questions are compulsory. Each question carries 5 marks. One mark will be deducted for a wrong answer.

Full Marks: 250


(Time: 60 Minutes)

1. In the given circuit, if the potential at A is 50 V, then potential at B is:

(a) $\frac{50}{3} V$ (b) $\frac{100}{3} V$
 (c) $50V$ (d) $25V$

2. Four diode connections are given below. Identify the diagram in which the diode is forward biased.

Choose the **correct** answer from the options given below:

(a) B only (b) B and D only
 (c) B, C and D only (d) B and C only
 3. The magnetic field strength in silicon is $1000 A/m$. If its magnetic susceptibility is -0.3×10^{-5} , then the intensity of magnetization will be:
 (a) $3 \times 10^{-3} A/m$ (b) $-3 \times 10^{-3} A/m$
 (c) $4.5 \times 10^{-3} A/m$ (d) $-6.0 \times 10^{-3} A/m$
 4. Match List-I with List-II.

List-I		List-II	
A.	Intrinsic semiconductor	I.	Number of conduction electrons $>>$ number of holes
B.	n -type semiconductor	II.	Number of conduction electrons $<<$ number of holes
C.	p -type semiconductor	III.	Net current is zero
D.	p - n junction under equilibrium	IV.	Number of conduction electrons = number of holes

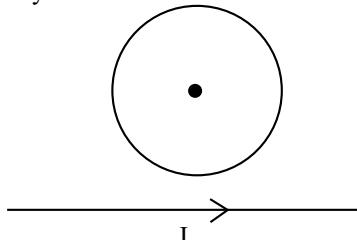
Choose the **correct** answer from the options given below:

(a) A-II, B-IV, C-I, D-III (b) A-IV, B-II, C-I, D-III
 (c) A-IV, B-I, C-II, D-III (d) A-II, B-I, C-IV, D-III
 5. A transformer has 400 turns in the primary coil and 8000 turns in the secondary coil. It is connected to a 220 V main supply. The potential difference per turn in secondary coil is
 (a) 1.1 V (b) 11 V
 (c) 0.55 V (d) 5.5 V

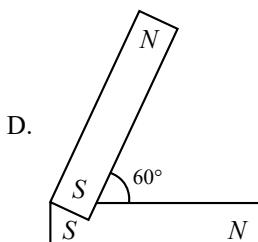
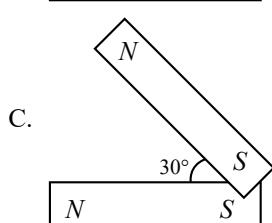
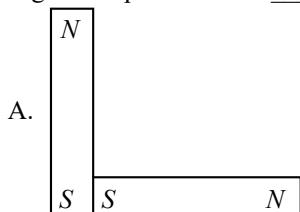
6. Two conducting spheres A and B of radii ' a ' and ' b ' respectively are charged to have the same electric potential. The ratio of surface charge densities of A and B is

(a) $\frac{a}{b}$ (b) $\frac{b}{a}$
 (c) $\frac{a^2}{b^2}$ (d) $\frac{b^2}{a^2}$

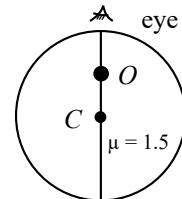
7. A cylindrical wire is stretched to increase its length by 10%. The percentage increase in resistance will be


(a) 10% (b) 15%
 (c) 21% (d) 32%

8. The figure shows a long cylindrical straight wire of radius a carrying steady current (I). The current (I) is uniformly distributed across the cross-section of the wire. The ratio of the magnetic fields at points $r = \frac{a}{3}$ and $r = \frac{a}{2}$, respectively is: Here r is the distance of point from the axis of cylinder.




(a) 2 : 3 (b) 3 : 2
 (c) 9 : 4 (d) 1 : 1

9. A circular loop of conducting wire is placed near a current carrying wire as shown in the figure. Both are in the same plane. If the current flowing through the wire is suddenly increased.


(a) Loop will have induced current in the anti-clockwise direction
 (b) Loop will have induced current in the clockwise direction
 (c) There will be no induced current in the loop
 (d) the loop will be attracted by the wire

10. The figure shows an arrangement of bar magnets in different configurations. Each bar magnet has a magnetic dipole moment m . The figure which has the maximum magnetic dipole moment _____.

(a) configuration (A) (b) configuration (B)
 (c) configuration (D) (d) configuration (D)

11. There is a small air bubble inside a glass sphere ($\mu = 1.5$) of radius 10 cm. The bubble is 4.0 cm below the surface and is viewed normally from outside as shown. The apparent depth of the bubble will be

(a) 6.0 cm below the surface
 (b) 4.0 cm below the surface
 (c) 3.0 cm below the surface
 (d) 2.0 cm below the surface

12. A thin prism of refractive index 1.5 when placed in air deviates a light ray by a minimum angle of 5° . The angle of minimum deviation when it is immersed in oil of refractive index 1.25 is:

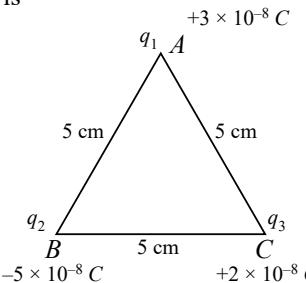
(a) 2° (b) 4°
 (c) 5° (d) 2.5°

13. Identify the correct statement(s).

A. In any lens, the optical centre is always at the centre of the lens.
 B. In a lens, if the curvature of its two surfaces is equal, the optical centre is at the centre of the lens.
 C. A light ray passing through the optical centre of a lens never shifts from the direction of the incident ray.
 D. A ray of light incident perpendicularly on a lens passes through its focus after refraction.

Choose the **correct** answer from the following given options.

(a) A and B only (b) B only
 (c) A, B, C and D (d) B and C only


14. Arrange the following nuclei in the ascending order of their stability.

- A. Oxygen (^{16}O) with binding energy 127.5 MeV
- B. Uranium (^{238}U) with binding energy 1808.8 MeV
- C. Helium (^{4}He) with binding energy 28.3 MeV
- D. Iron (^{56}Fe) with binding energy 490 MeV

Choose the **correct** answer from the options given below:

- (a) C, D, A, B
- (b) C, A, D, B
- (c) C, B, A, D
- (d) C, A, B, D

15. Three point charges are placed at the corners of an equilateral triangle ABC as shown. The work done to put together these charges from infinity to their respective locations is

- (a) $3.42 \times 10^{-4} \text{ J}$
- (b) $34.2 \times 10^{-4} \text{ J}$
- (c) $-3.42 \times 10^{-4} \text{ J}$
- (d) $-5.5 \times 10^{-4} \text{ J}$

16. Which of the following statements is **correct** for a charged metallic shell?

- (a) The electric field intensity is zero inside the shell and decreases outside the shell as we move away from the shell.
- (b) The electric field intensity is uniform inside the shell and decreases outside the shell as we move away from its center.
- (c) The electric potential is zero inside the shell and decreases outside the shell as we move away from its center.
- (d) The electrostatic potential increases linearly with the distance from its center inside the shell.


17. The intensity of transmitted light is maximum when a Polaroid sheet (P_2) is rotated between two crossed Polaroids, P_1 and P_3 when

- (a) the angle between P_1 and P_2 and P_2 and P_3 will be $\frac{\pi}{4}$
- (b) polaroids P_1 and P_2 are crossed
- (c) angle between P_1 and P_2 is $\frac{\pi}{3}$ and between P_2 and P_3 is $\frac{\pi}{6}$
- (d) the angle between P_2 and P_3 does not matter

18. When light passes from air to glass, then

- (a) its wavelength increases and velocity decreases.
- (b) its wavelength and velocity both decrease.
- (c) its wavelength decreases but velocity increases.
- (d) its wavelength and velocity both increase.

19. The equivalent resistance between P and Q is:

- (a) 8Ω
- (b) 7.5Ω
- (c) 16Ω
- (d) 12Ω

20. Three point charges $+q$, $+q$ and $-2q$ are placed at the corner of an equilateral triangle of side ' a '. The net dipole moment of the system is

- (a) Zero
- (b) $2qa$
- (c) $\frac{1}{\sqrt{3}}qa$
- (d) $qa\sqrt{3}$

21. Two cells of emf E and $2E$ with internal resistances r and $3r$, respectively are connected in parallel. The emf and internal resistance of the combination is:

- (a) $\frac{4}{3}E, \frac{2}{3}r$
- (b) $\frac{1}{4}E, \frac{3}{2}r$
- (c) $\frac{5}{4}E, \frac{3}{4}r$
- (d) $\frac{2}{3}E, \frac{1}{2}r$

22. A step-up transformer operates on a 220 V line and supplies a current of 2 A . The ratio of primary and secondary winding is $1 : 25$. Assuming 100% efficiency, the output power of the transformer is:

- (a) 11000 W
- (b) 22000 W
- (c) 36000 W
- (d) 44000 W

23. Identify the electromagnetic waves as per their following use/applications.

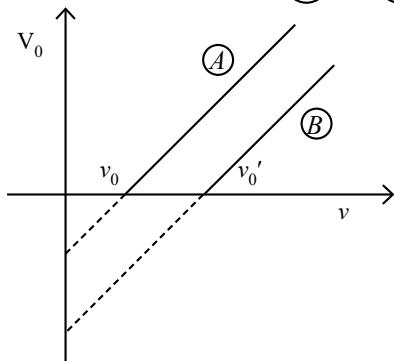
- A. λ_1 is used to produce heating effect
- B. λ_2 is used in satellite communication
- C. λ_3 is absorbed by the ozone layer
- D. λ_4 is used for studying crystal structure

Choose the **correct** answer from the options given below:

- (a) A-Microwave, B-Visible, C-UV, D-Infrared
- (b) A-Infrared, B-Microwave, C-Ultraviolet, D- Visible
- (c) A-Infrared, B-Microwave, C-Ultraviolet, D- X-rays
- (d) A-UV, B-Microwave, C-Infrared, D-Visible

24. Match List-I with List-II.

List-I (Phenomenon)		List-II (Characteristics)	
A. Reflection		I. Used for reducing glare	
B. Refraction		II. Change in path when a light is incident on opaque medium	


C.	Interference	III.	Change in path when a light is incident on transparent medium
D.	Polarisation	IV.	Light added to light to produce darkness

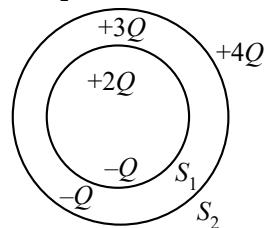
Choose the **correct** answer from the options given below:

- (a) A-III, B-I, C-IV, D-II
- (b) A-II, B-III, C-I, D-IV
- (c) A-III, B-II, C-IV, D-I
- (d) A-II, B-III, C-IV, D-I

25. Two identical metal balls, A and B , with similar charges Q , are suspended with insulating threads. They repel each other with a force F . Another identical uncharged metal ball C is first touched with metal ball A and then touched with metal ball B and finally removed. The new force of repulsion between A and B will be

26. The graphs of stopping potential versus frequency of incident radiation for two metals (A) and (B) are given.

Identify the correct statement(s) from the following


- A. The slope of the graphs is equal to the Planck's constant
- B. Intercept on the ($-y$) axis is equal to (work function/e).
- C. Threshold frequency for metal (A) is higher than metal (B)
- D. Work function for metal (B) is greater than metal (A)

Choose the **correct** answer from the options given below:

27. A proton moves with a velocity equal to $\left(\frac{1}{20}\right)^{\text{th}}$ of the velocity of light. The associated de-Broglie wavelength is:

(a) $1.3 \times 10^{-12} \text{ m}$ (b) $1.98 \times 10^{-14} \text{ m}$
 (c) $3.265 \times 10^{-14} \text{ m}$ (d) $4.16 \times 10^{12} \text{ m}$

28. In the given figure, the ratio of electric fluxes through surfaces S_1 and S_2 is

29. The rate of change of current which produces an induced emf of 100 V in an inductor of inductance 10 H is

(a) 8 A/s (b) 10 A/s
 (c) 12.5 A/s (d) 14 A/s

30. If the mass of a proton is $1.007825\text{ }u$ and the mass of the neutron is $1.008665\text{ }u$, the mass defect in the formation of ${}^7_3\text{Li}$ nucleus is: (take the mass of Lithium nucleus as $7.000000\text{ }u$)

(a) 0.058135 u (b) 0.057295 u
 (c) 0.016490 u (d) 0.056420 u

31. An external voltage is applied across a diode such that the n-side is positive and the p-side is negative. As a result,

- A. the barrier height decreases
- B. the barrier height increases
- C. the depletion region widens
- D. the depletion region width decreases
- E. the depletion region height

E. no change in barrier height

Choose the correct answer from the options :

(a) A and B only (b) C and E only
(c) D and F only (d) B and C only

32. When a magnet is being brought towards a coil, the emf induced in the coil does not depend on:

- (a) the number of turns in the coil
- (b) the speed of the magnet
- (c) the pole strength of the magnet
- (d) the resistance of the coil

33. A piece of copper and a piece of germanium are cooled from room temperature 20°C down to 80 K . The resistance of

- (a) both of them will increase.
- (b) both of them will decrease.
- (c) copper increases and that of
- (d) copper decreases and that of

34. An electron is moving at a velocity of 3.2×10^7 m/s in a magnetic field along a circular path of radius 20 cm. The magnitude of the magnetic field applied is (approximately)

(a) 6×10^{-4} T (b) 8.43×10^{-5} T
 (c) 9×10^{-4} T (d) 9×10^{-5} T

35. Voltage sensitivity of a moving coil galvanometer doesn't depend on:

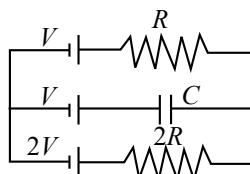
- (a) Magnetic field
- (b) Number of turns of the coil
- (c) Resistance of the coil
- (d) torsional constant of the spring

36. When a radiation is incident on a metal surface of work function (Φ_0), photo electrons are emitted with some maximum kinetic energy (k). If the frequency of the incident radiation is doubled, then the maximum kinetic energy of the emitted photo electrons will become

- (a) $2k$
- (b) $2k - \Phi_0$
- (c) $2k + \Phi_0$
- (d) k

37. Rainbow is a phenomenon due to the combined effect of

- A. Interference
- B. Dispersion
- C. Reflection
- D. Refraction
- E. Scattering


Choose the **correct** answer from the options given below:

- (a) A, B and C only
- (b) B, C and D only
- (c) A only
- (d) C, D and E only

38. An electric dipole is kept in an electric field which is increasing in $+x$ direction. The dipole moment of the dipole is also along the $+x$ direction. Which of the following options is correct for the electric dipole.

- (a) Electric dipole will not experience any force in the presence of the electric field (\vec{E})
- (b) Electric dipole will experience force and try to align perpendicular to the direction of electric field (\vec{E}).
- (c) Electric dipole will experience a net force in $+x$ direction.
- (d) Electric dipole will experience a net force in $-x$ direction.

39. In the given circuit when steady current flows, the potential drop across the capacitor is:

- (a) V
- (b) $\frac{V}{3}$
- (c) $\frac{V}{2}$
- (d) $\frac{2V}{3}$

40. An electron in a hydrogen atom emits wavelengths during the transitions given below. Arrange these wavelengths in ascending order:

- A. from $n = 3$ to $n = 2$
- B. from $n = 2$ to $n = 1$

- C. from $n = \infty$ to $n = 1$
- D. from $n = \infty$ to $n = 3$
- E. from $n = 4$ to $n = 1$

Choose the **correct** answer from the options given below:

- (a) C, B, E, A, D
- (b) C, E, B, D, A
- (c) C, B, A, E, D
- (d) C, E, B, A, D

41. A conducting circular loop is placed in a uniform magnetic field of 0.5 T , with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at the rate of 4 mm/s . When the radius of the loop is 4 cm , the induced emf in the loop is

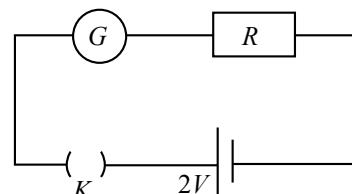
- (a) $3.2\pi \mu V$
- (b) $1.6\pi \mu V$
- (c) $0.8\pi \mu V$
- (d) $160\pi \mu V$

42. An electron is projected into a magnetic field of flux density 10 Wb/m^2 with a velocity of $3 \times 10^7 \text{ m/s}$ at an angle of 30° to the field. The magnetic force on the electron is:

- (a) $1.6 \times 10^{-11} \text{ N}$
- (b) $4.8 \times 10^{-11} \text{ N}$
- (c) $2.4 \times 10^{-11} \text{ N}$
- (d) $9.2 \times 10^{-11} \text{ N}$

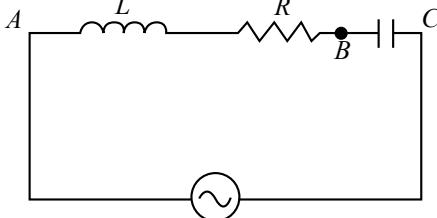
43. Kirchhoff's second law for an electric network is based on:

- (a) Law of conservation of mass
- (b) Law of conservation of charge
- (c) Law of conservation of energy
- (d) Law of conservation of momentum


44. The ratio of radii of the nuclei with the mass numbers given as 2, 16, 54 and 128, respectively, will be

- (a) $1 : 3 : 4 : 8$
- (b) $1 : 2 : 3 : 4$
- (c) $2 : 3 : 4 : 5$
- (d) $1 : 3 : 5 : 7$

45. In a diffraction experiment, the screen is placed 2 m away from a narrow slit. The first minimum observed is at 5 mm on either side of the central maximum for wavelength of $5 \times 10^{-5} \text{ cm}$. The width of the slit is:


- (a) 0.01 cm
- (b) 0.02 cm
- (c) 0.11 cm
- (d) 0.12 cm

46. In the given circuit, the resistance of the galvanometer is $G = 100 \Omega$. Resistance box R contributes 4900Ω . When key K is closed. The needle of the galvanometer deflects to the 20^{th} division. The figure of merit of the galvanometer is:

- (a) $2 \times 10^{-5} \text{ A/div}$
- (b) $2 \times 10^{-4} \text{ A/div}$
- (c) $5 \times 10^{-5} \text{ A/div}$
- (d) $5 \times 10^{-4} \text{ A/div}$

47. An LCR series circuit, with $L = \frac{2}{\pi} H$, $R = 100 \Omega$ and $C = \frac{100}{\pi} \mu F$ is connected across a source of $200 V$, 50 Hz as shown. The peak potential difference between A and B is:

(a) $600 V$ (b) $200\sqrt{5} V$
(c) $20\sqrt{5} V$ (d) $300\sqrt{2} V$

48. Which of the following has zero average value in a plane electromagnetic wave?

A. Electric field B. Magnetic field
C. Electric energy D. Magnetic energy

Choose the correct answer from the options given below:

(a) A and C only (b) B and D only
(c) B only (d) A and B only

49. Four resistors of 6Ω resistance each are joined as shown in the figure. The equivalent resistance of the combination is:

(a) 8Ω (b) 10.5Ω
(c) 24Ω (d) 1.5Ω

50. The magnetic field in a plane electromagnetic wave is given by $B = 3 \times 10^{-7} \sin(1.5x + 5 \times 10^8 t) T$, where x is in meter and t is in second. The wavelength of the wave is:

(Take: $n = 3$)
(a) $1.5 m$ (b) $3 m$
(c) $4 m$ (d) $2.5 m$

Answer Key

1. (a) 2. (b) 3. (b) 4. (c) 5. (d) 6. (b) 7. (c) 8. (a) 9. (a) 10. (b)
11. (c) 12. (a) 13. (d) 14. (c) 15. (c) 16. (a) 17. (a) 18. (b) 19. (a) 20. (d)
21. (c) 22. (a) 23. (c) 24. (d) 25. (d) 26. (d) 27. (c) 28. (d) 29. (b) 30. (a)
31. (d) 32. (d) 33. (d) 34. (c) 35. (d) 36. (c) 37. (b) 38. (c) 39. (b) 40. (d)
41. (d) 42. (c) 43. (c) 44. (b) 45. (b) 46. (a) 47. (b) 48. (d) 49. (a) 50. (c)

Explanations

1. (a) Given:
 $V_A = 50 V$, and $V_C = 0$ ground).
 $C_2 = 4 \mu F$ and $C_3 = 2 \mu F$ are in parallel:
 $C_{23} = C_2 + C_3 = 4 + 2 = 6 \mu F$
This equivalent C_{23} is in series with $C_1 = 3 \mu F$.

For series:

$$\frac{1}{C_{eq}} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

$$C_{eq} = 2 \mu F$$

Charge on each series capacitor =

$$Q = C_{eq} V = 2 \times 50 = 100 \mu C$$

Potential across C_1 :

$$V_1 = \frac{Q}{C_1} = \frac{100}{3} = 33.3 V$$

Hence, potential at B:

$$V_B = V_A - V_1 = 50 - \frac{100}{3} = \frac{50}{3} V$$

2. (b) For forward biasing of diode, p-type of diode should be at higher potential than n-type at lower potential.

3. (b) Given values are:

- Magnetic field strength (H) = $1000 A/m$

- Magnetic susceptibility (χ) = -0.3×10^{-5}

The relationship between the intensity of magnetization (M), magnetic susceptibility (χ), and magnetic field strength (H)

$$M = \chi H$$

Substitute the values into the formula:

$$M = (-0.3 \times 10^{-5}) \times (1000)$$

$$M = (-0.3 \times 10^{-5}) \times (10^3)$$

$$M = -0.3 \times 10^{-5+3}$$

$$M = -0.3 \times 10^{-2}$$

$$M = -3 \times 10^{-3} A/m$$

4. (c) A-IV, B-I, C-II, D-III

5. (d) Given:

$$N_p = 400, N_s = 8000, V_p = 220 \text{ V}$$

Potential difference per turn in primary coil:

$$V_{\text{per turn}} = \frac{V_p}{N_p} = \frac{220}{400} = 0.55 \text{ V/turn}$$

Since the turn ratio is same,

Potential difference per turn in secondary coil = 0.55 V

6. (b) For a conducting sphere, potential

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$$

Given $V_A = V_B$, so

$$\frac{Q_A}{a} = \frac{Q_B}{b} \Rightarrow \frac{Q_A}{Q_B} = \frac{a}{b}$$

$$\text{Surface charge density } \sigma = \frac{Q}{4\pi R^2}$$

$$\frac{\sigma_A}{\sigma_B} = \frac{Q_A/a^2}{Q_B/b^2} = \frac{(a/b)}{(a^2/b^2)} = \frac{b}{a}$$

7. (c) Given: wire length increases by 10%, i.e.

$$L_2 = 1.1L_1$$

Volume remains constant \Rightarrow

$$A_1 L_1 = A_2 L_2 \Rightarrow A_2 = \frac{A_1}{1.1}$$

$$\text{Resistance } R = \rho \frac{L}{A}$$

So,

$$\frac{R_2}{R_1} = \frac{L_2/A_2}{L_1/A_1} = \frac{1.1}{1/1.1} = (1.1)^2 = 1.21$$

Percentage Increase: The fractional increase is $\frac{R_2 - R_1}{R_1}$.

Fractional Increase

$$= \frac{1.21R_1 - R_1}{R_1} = \frac{0.21R_1}{R_1} = 0.21$$

Percentage Increase = $0.21 \times 100\% = 21\%$

8. (a) The magnetic field B is directly proportional to the distance r from the axis ($B \propto r$):

$$\frac{B_1}{B_2} = \frac{r_1}{r_2}$$

Magnetic Field at $r_1 = \frac{a}{3}(B_1)$:

$$B_1 = \frac{\mu_0 I (a/3)}{2\pi a^2}$$

Magnetic Field at $r_2 = \frac{a}{2}(B_2)$:

$$B_2 = \frac{\mu_0 I (a/2)}{2\pi a^2}$$

Ratio $\frac{B_1}{B_2}$: We take the ratio, canceling all common terms $\left(\frac{\mu_0 I}{2\pi a^2}\right)$:

$$\frac{B_1}{B_2} = \frac{a/3}{a/2}$$

$$\frac{B_1}{B_2} = \frac{1/3}{1/2}$$

$$\frac{B_1}{B_2} = \frac{1}{3} \times \frac{2}{1} = \frac{2}{3}$$

The ratio of the magnetic fields is 2: 3.

9. (a) The loop will have induced current in the anti-clockwise direction

This is based on Faraday's Law of Induction and Lenz's Law.

10. (b) The magnitude of the resultant moment is given by:

$$M_{\text{net}} = \sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \theta}$$

where θ is the angle between the two dipole moments. Since $m_1 = m_2 = m$ for all configurations:

$$\begin{aligned} M_{\text{net}} &= \sqrt{m^2 + m^2 + 2m^2 \cos \theta} \\ &= m\sqrt{2(1 + \cos \theta)} \end{aligned}$$

To maximize M_{net} , we must maximize $\cos \theta$, which occurs when $\theta = 0^\circ$.

11. (c) The image of the air bubble is formed because of refraction at the spherical glass-air interface. The light rays travel from glass ($\mu_1 = 1.5$) to air ($\mu_2 = 1$).

Given:

Using the refraction formula for a spherical surface,

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

Substituting the values:

$$\frac{1}{v} - \frac{1.5}{-4} = \frac{1-1.5}{-10}$$

$$\frac{1}{v} = \frac{1.5}{4} + \frac{0.5}{10}$$

$$\frac{1}{v} = -\frac{1}{3} \Rightarrow v = -3.0 \text{ cm}$$

Hence, the apparent position of the bubble is 3.0 cm below the surface.

12. (a) For a thin prism,

$$\delta = (\mu_{\text{rel}} - 1)A$$

$$\text{where } \mu_{\text{rel}} = \frac{\mu_{\text{prism}}}{\mu_{\text{medium}}}$$

Given in air ($\mu_{\text{medium}} = 1$):

$$5^\circ = (1.5 - 1)A \Rightarrow A = \frac{5^\circ}{0.5} = 10^\circ$$

Now, in oil ($\mu_{\text{medium}} = 1.25$):

$$\delta' = \left(\frac{1.5}{1.25} - 1 \right)$$

$$A = (1.2 - 1) \times 10^\circ = 0.2 \times 10^\circ = 2^\circ$$

13. (d) B and C only

14. (c) Stability depends on binding energy per nucleon = (total binding energy) \div (mass number).

Let's calculate roughly:

• C (${}^4\text{He}$): $28.3/4 = 7.1 \text{ MeV/nucleon}$

• A (${}^{16}\text{O}$): $127.5/16 = 7.97 \text{ MeV/nucleon}$

• D (${}^{56}\text{Fe}$): $490/56 = 8.75 \text{ MeV/nucleon}$

• B (${}^{238}\text{U}$): $1808.8/238 = 7.6 \text{ MeV/nucleon}$

Ascending order (least stable \rightarrow most stable):

$$C < B < A < D$$

15. (c) The work done (W) is equal to the total electrostatic potential energy (U) of the system:

$$W = U = k \frac{q_A q_B + q_B q_C + q_C q_A}{r}$$

Given values: $k = 9 \times 10^9 \text{ N m}^2/\text{C}^2$, $r = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}$ Charges (in units of 10^{-8}), $q_A = +3$, $q_B = -5$, $q_C = +2$

Product of Charge Pairs (in units of $10^{-16} \times \text{C}^2$):

$$q_A q_B = (3)(-5) = -15$$

$$q_B q_C = (-5)(2) = -10$$

$$q_C q_A = (2)(3) = 6$$

$$\text{Sum} = -15 - 10 + 6 = 19$$

Total Work:

$$W = \frac{9 \times 10^9}{5 \times 10^{-2}} \times (-19) \times 10^{-16}$$

$$W = (1.8 \times 10^{11}) \times (-19) \times 10^{-16}$$

$$W = -34.2 \times 10^{-5} \text{ J}$$

$$W = -3.42 \times 10^{-4} \text{ J}$$

16. (a)

17. (a) When the two outer polaroids (P_1 and P_3) are crossed (angle 90° or $\frac{\pi}{2}$), the intensity of light transmitted through the system is given by the three-polaroid application of Malus's Law:

$$I_{\text{trans}} = \frac{I_{\text{incident}}}{4} \sin^2(2\theta_1)$$

where θ_1 is the angle between P_1 and the middle polaroid P_2 .

The intensity is maximum when $\sin(2\theta_1) = 1$:

$$2\theta_1 = \frac{\pi}{2} \Rightarrow \theta_1 = \frac{\pi}{4}$$

1

MOCK TEST PAPER

Instructions

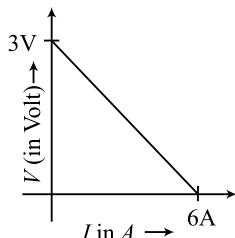
There will be 50 questions. All questions are compulsory. Each question carries 5 marks. One mark will be deducted for a wrong answer.

Full Marks: 250

(Time: 60 Minutes)

1. Two charged spheres separated at a distance R exert a force F on each other. If they are immersed in a liquid of dielectric constant 5 then what is the new force between them

(a) $\frac{F}{5}$ (b) F (c) $5F$ (d) $\frac{F}{2}$


2. A $2\mu\text{F}$ capacitor is charged to a potential 500V and then the plates of the capacitor are joined through a resistance. The heat produced in the resistance in joule is

(a) 60×10^{-2} Joule (b) 25×10^{-2} Joule
(c) 0.25×10^{-2} Joule (d) 0.5×10^{-2} Joule

3. The kinetic energy of an electron which is accelerated in the potential difference of 100V is

(a) 1.6×10^{-17} J (b) 1.6×10^{-14} J
(c) 1.6×10^{-10} J (d) 1.6×10^{-8} J

4. The variation of terminal potential difference (V) with current flowing through a cell is as shown. The emf and internal resistance of the cell are

(a) 6 V, 2Ω (b) 3 V, 2Ω
(c) 6 V, 0.5Ω (d) 3 V, 0.5Ω

5. The potential of the electric field produced by point charge at any point (x,y,z) is given by $V = 3x^2 + 5$ where x,y are in meter and V is in volt. The intensity of electric field at $(-2, 1, 0)$ is

(a) $+17 \text{ Vm}^{-1}$ (b) -19 Vm^{-1}
(c) $+12 \text{ Vm}^{-1}$ (d) -12 Vm^{-1}

6. Ohm's law is true

(a) For metallic conductors at constant temperature
(b) For metallic conductors at variable temperature
(c) For electrolytes when current passes through them
(d) For diode when current flows

7. The lowest resistance which can be obtained by connecting 10 resistors each of $\frac{1}{10}$ ohm is

(a) $\frac{1}{250}$ ohm (b) $\frac{1}{200}$ ohm
(c) $\frac{1}{100}$ ohm (d) $\frac{1}{10}$ ohm

8. Which of the following Maxwell's equations which is valid for time varying conditions but not valid for static conditions:

(a) $\oint \vec{D} \cdot d\vec{A} = Q$ (b) $\oint \vec{E} \cdot d\vec{l} = 0$
(c) $\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \phi_B}{\partial t}$ (d) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$

9. Three voltmeters A , B and C having resistances R , $1.5R$ and $3R$ respectively are used in a circuit as shown. When a P.D. is applied between X and Y , the reading of the voltmeters are V_1 , V_2 and V_3 respectively. Then

(a) $V_1 = V_2 = V_3$ (b) $V_1 < V_2 = V_3$
(c) $V_1 > V_2 > V_3$ (d) $V_1 > V_2 = V_3$

10. Among two interfering sources, let A be ahead in phase by 54° relative to B. If the observations be taken from point

P, such that $PB - PA = 1.5 \lambda$, deduce the phase difference between the waves from A and B reaching P.

(a) 33π radian (b) 2.3π radian
(c) 11π radian (d) 3.3π radian

11. Read the following statements carefully:

Statement-I: A solenoid tends to expand when a current passes through it.

Statement-II: Two straight parallel metallic wires carrying current in the same direction repel each other.

Statement-III: The magnetic field inside a long straight solenoid is uniform and along the axis of the solenoid.

Statement-IV: A charged particle moving parallel to a magnetic field experiences no force.

Choose the correct statements:

(a) Statements I and II only
(b) Statements III, and IV only
(c) Statements II and III only
(d) Statements I, III, and IV only

12. A bar magnet is placed in the position of stable equilibrium in a uniform magnetic field of induction B. If it is rotated through an angle 180° , then the work done is:

(a) MB (b) $2MB$ (c) $MB/2$ (d) Zero

13. Four types of magnetic materials are listed below:

A. Ferromagnetics B. Diamagnetics
C. Paramagnetics

Choose the correct order of the materials in increasing order of magnetic susceptibility.

(a) (A), (B), (C) (b) (B), (A), (C)
(c) (B), (C), (A) (d) (C), (A), (B)

14. The nature of light which is verified by the interference event will be

(a) Dual nature (b) Wave nature
(c) Particle nature (d) Quantum nature

15. Which of the following is constructed on the principle of electromagnetic induction?

(a) Galvanometer (b) Electric motor
(c) Generator (d) Voltmeter

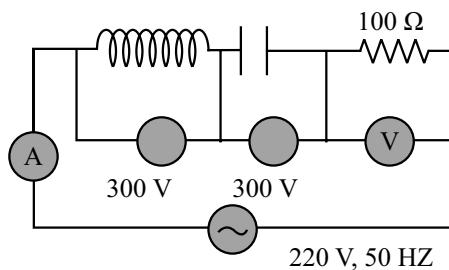
16. Match Column-I with Column-II:

Column-I	Column-II
A. Electrical conductivity of conductor depends on	(i) dimensions (length, area of cross section etc.)
B. Conductance of a conductor depends on	(ii) temperature
C. For a conductor of given dimensions and at a given temperature, current density depends on	(iii) nature of conductor
D. For a given potential difference applied across a conductor of given length, current in it will depend on	(iv) electric field strength

(a) A-(i), B-(ii, iii), C-(iv), D-(ii)
(b) A-(ii, iii), B-(i, ii, iii), C-(iii, iv), D-(i, ii, iii)
(c) A-(v), B-(ii), C-(iii), D-(iv)
(d) A-(iii), B-(v), C-(ii), D-(i)

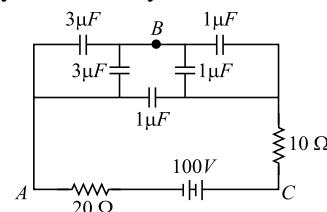
17. The impedance (Z) in an AC circuit with different configurations of resistors, capacitors, and inductors is as follows: (Take $R = 20\Omega$, $X_C = 5\Omega$, $X_L = 10\Omega$)

A. Purely resistive circuit B. RC series circuit
C. RL series circuit


The impedance of these circuits arranged in increasing order is _____.

(a) (B), (C), (A) (b) (A), (B), (C)
(c) (B), (A), (C) (d) (C), (A), (B)

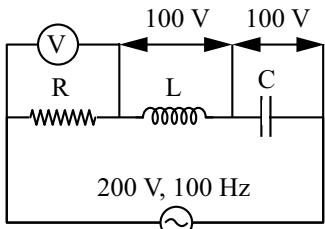
18. If net reactance in a circuit is $\sqrt{3}$ times of resistance, then find phase difference.


(a) Zero (b) 30°
(c) 60° (d) Data is incomplete

19. In the circuit shown below, what will be the readings of the voltmeter and ammeter

(a) 800 V, 2A (b) 300 V, 2A
(c) 220 V, 2.2 A (d) 100 V, 2A

20. In the diagram below, what is the potential difference between points A and B, and between points B and C, respectively, in the steady state?

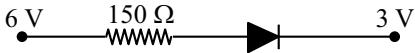


(a) $V_{AB} = V_{BC} = 50 V$ (b) $V_{AB} = 75 V, V_{BC} = 25 V$
(c) $V_{AB} = 25 V, V_{BC} = 75 V$ (d) $V_{AB} = V_{BC} = 100 V$

21. A plano convex lens fits exactly into a plano concave lens, with their plane surface are parallel to each other. If the lenses are made of different materials of refractive indices μ_1 & μ_2 and R is the radius of curvature of the surfaces of the lenses, then what is the focal length of combination?

(a) $\frac{R}{\mu_1 - \mu_2}$ (b) $\frac{2R}{\mu_1 + \mu_2}$
(c) $\frac{R}{2(\mu_1 - \mu_2)}$ (d) $\frac{R}{2(\mu_1 + \mu_2)}$

47. In the circuit shown in figure, what will be the reading of the voltmeter ?



(a) 100 V (b) 900 V (c) 200 V (d) 600 V

48. The lower Bohr orbit in hydrogen atom has

- (a) The maximum energy (b) The least energy
- (c) Zero energy (d) Infinite energy

49. The current through the ideal diode as shown in figure is

(a) 0 A (b) 0.02 A (c) 0.05 A (d) 0.08 A

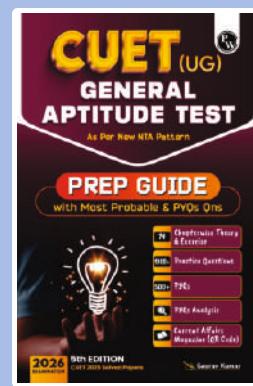
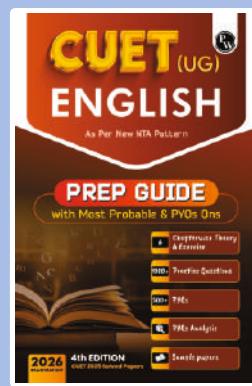
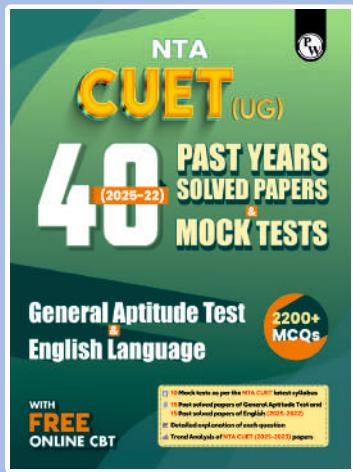
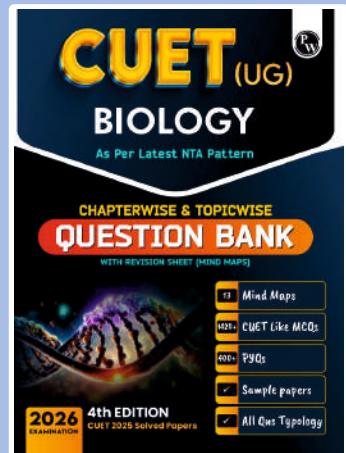
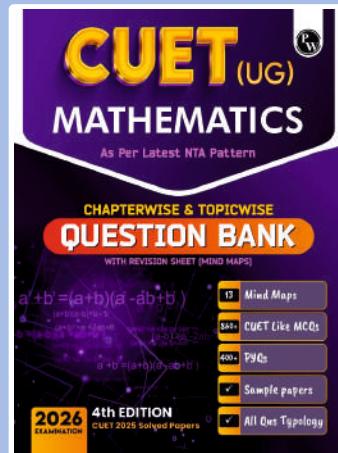
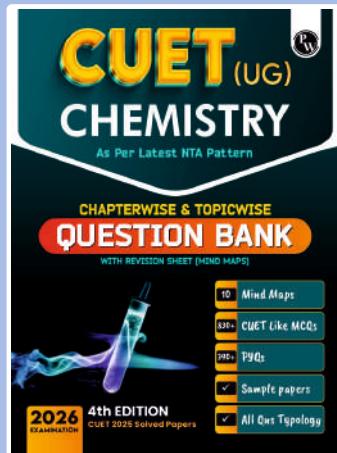
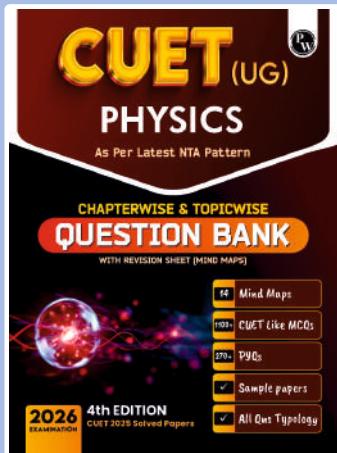
50. A cube of side x has a charge q at each of its vertices. The potential due to this charge array at the centre of the cube is

$$(a) \frac{5q}{3\pi\varepsilon_0 x}$$

$$(b) \frac{4q}{\sqrt{3}\pi\epsilon_0 x}$$

$$(c) \frac{3q}{4\pi\epsilon_0 x}$$

$$(d) \frac{7q}{\sqrt{3}\pi s_x}$$

Answer Key

(Scan QR Code for Detailed Explanations)

1. (a)	2. (b)	3. (a)	4. (d)	5. (c)	6. (a)	7. (c)	8. (b)	9. (a)	10. (d)
11. (b)	12. (b)	13. (c)	14. (b)	15. (c)	16. (b)	17. (b)	18. (c)	19. (c)	20. (c)
21. (a)	22. (c)	23. (b)	24. (c)	25. (a)	26. (d)	27. (a)	28. (c)	29. (b)	30. (d)
31. (c)	32. (a)	33. (d)	34. (c)	35. (c)	36. (d)	37. (c)	38. (b)	39. (a)	40. (b)
41. (a)	42. (a)	43. (b)	44. (a)	45. (b)	46. (c)	47. (c)	48. (b)	49. (b)	50. (b)

Complete Your Preparation

