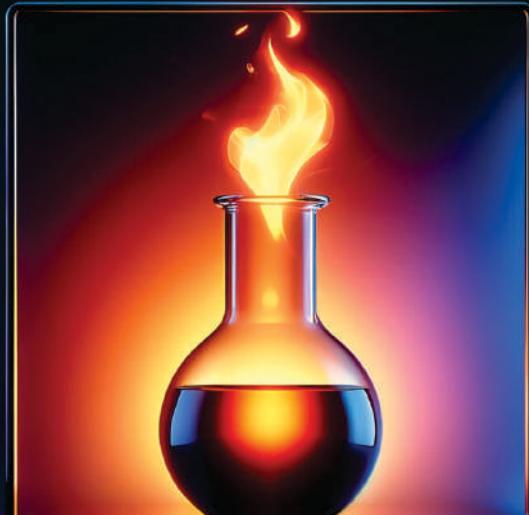


# JEE ADVANCED 48 YEARS


2025-1978



## CHAPTER-WISE & TOPIC-WISE SOLVED PAPERS

### WITH RESPONSE TAGGING

Analyse the question-wise difficulty level in real-time with Correct (C), Wrong (W) and Unattempted (UA) questions response tagging provided by IIT-JEE



# CHEMISTRY

ANSWER KEY VERIFIED FROM OFFICIAL WEBSITE OF JEE ADVANCED

# JEE ADVANCED-6 Year (2024-19) Paper Analysis

**Note:** Due to unavailability of 2025 paper data we are unable to incorporate the 2025 analysis. As we are coming up with this book before the 2025 result.

## Explanation of **★Unique★** Feature

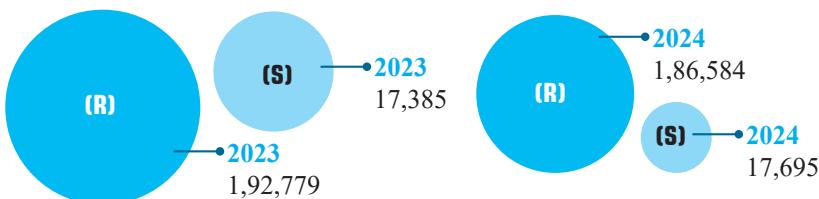
C – Correct, W – Wrong, UA – Unattempted, PC – Partial Correct

**C-31 W-22 UA-10 PC-36** represents the % of distribution of correct, wrong, unattempted and partial correct responses by students at any specific question in real time.(Data is taken from JEE Advanced website: <https://jeeadv.ac.in/reports.html>)

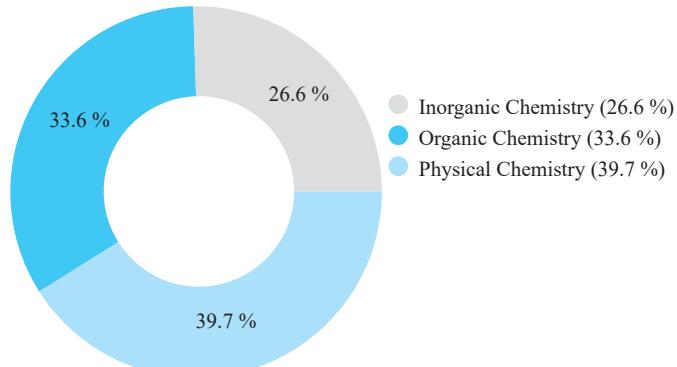
Classification helps students understand the varying **levels of difficulty**.



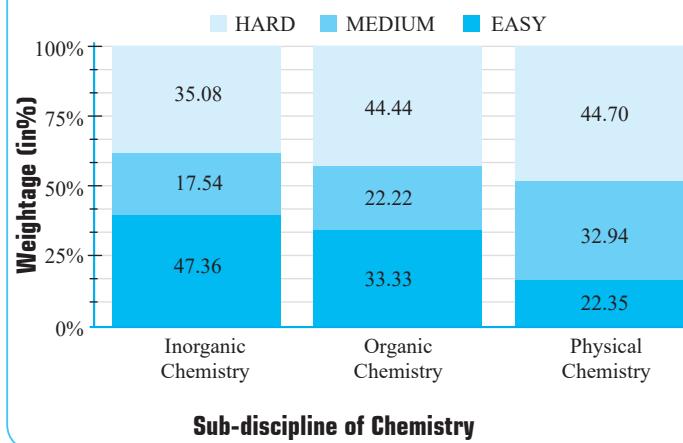
### For Example

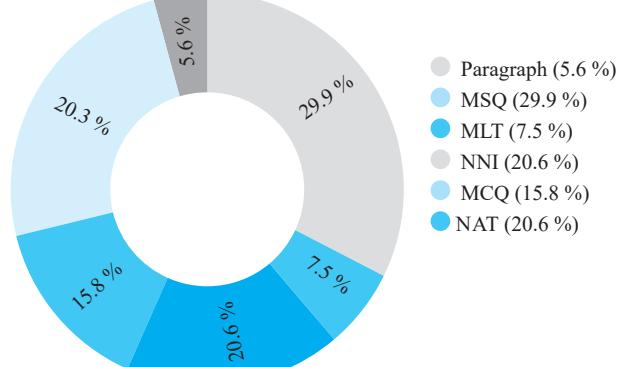
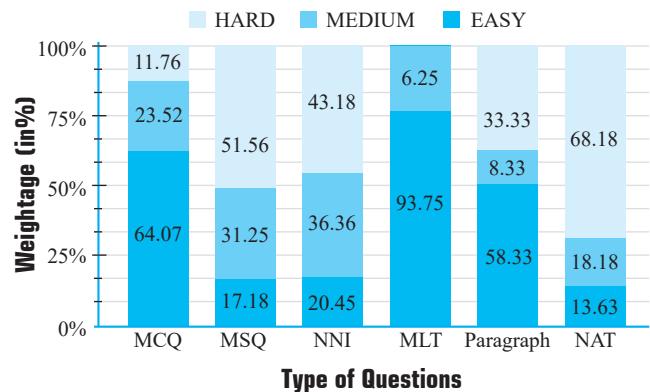
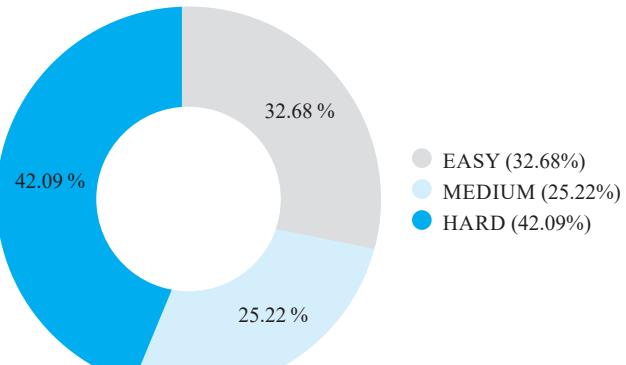
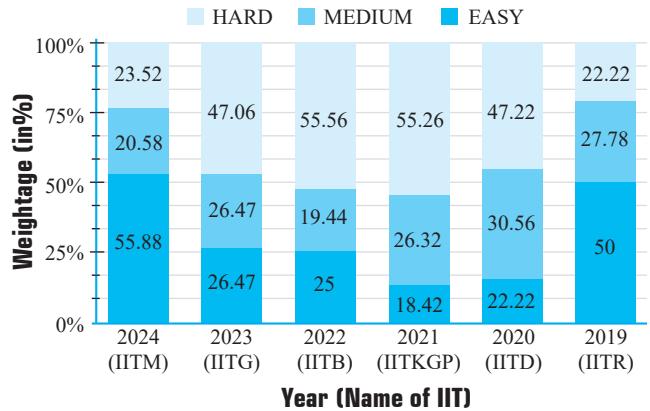

22. Which of the following statement(s) is (are) correct regarding the root mean square speed ( $U_{rms}$ ) and average translational kinetic energy ( $E_{av}$ ) of a molecule in a gas at equilibrium?

**C-31 W-22 UA-10 PC-36 (JEE Adv. 2019)**


- (a)  $U_{rms}$  is inversely proportional to the square root of its molecular mass
- (b)  $U_{rms}$  is doubled when its temperature is increased four times
- (c)  $E_{av}$  is doubled when its temperature is increased four times
- (d)  $E_{av}$  at a given temperature does not depend on its molecular mass

Question is considered EASY as Correct response recorded was **20%**


● Registered Candidates (R)  
● Seat Capacity (S)


### How Chemistry Marks Shape UP Across Sub-disciplines (2024-19)



### How Difficulty Level Vary in Subdiscipline (2024-19)



**Distribution of Question Type****Weightage of Difficulty Level Based on Type of Questions****Distribution of Question Based on Difficulty****Distribution of Level of Questions Yearwise****Chapter wise Weightage and count of Difficulty level of JEE Advanced Questions**

| Chapters Name                                                           | EASY | MEDIUM | HARD | Chapterwise Weightage(in %) |
|-------------------------------------------------------------------------|------|--------|------|-----------------------------|
| Aldehydes, Ketones and Carboxylic acids                                 | 6    | 4      | 10   | 9.34                        |
| Hydrocarbons                                                            | 6    | 2      | 5    | 6.07                        |
| The d- and f-Block Elements and Qualitative analysis of Inorganic salts | 6    | 3      | 5    | 6.54                        |
| Thermodynamics                                                          | 0    | 5      | 7    | 5.60                        |
| The p-Block Elements (Group 15 to 18)                                   | 8    | 2      | 4    | 6.54                        |
| Electrochemistry                                                        | 0    | 4      | 7    | 5.14                        |
| Equilibrium                                                             | 0    | 2      | 7    | 4.20                        |
| Coordination Compounds                                                  | 7    | 3      | 3    | 6.07                        |
| Amines                                                                  | 3    | 2      | 5    | 4.67                        |
| General Principles and Processes of Isolation of Elements               | 1    | 2      | 5    | 3.73                        |
| Chemical Kinetics                                                       | 4    | 1      | 5    | 4.67                        |
| Organic Chemistry-Some Basic Principles and Techniques                  | 2    | 2      | 4    | 3.73                        |
| Chemical Bonding and Molecular Structure                                | 4    | 2      | 1    | 3.27                        |
| Biomolecules                                                            | 3    | 2      | 3    | 3.73                        |
| Structure of Atom                                                       | 4    | 2      | 2    | 3.73                        |
| Solutions                                                               | 3    | 1      | 3    | 3.27                        |



# CONTENTS

|                                                                  |                |
|------------------------------------------------------------------|----------------|
| ❖ 2025 JEE Advanced Solved Paper .....                           | <b>i-x</b>     |
| 1. Some Basic Concepts of Chemistry .....                        | <b>1-3</b>     |
| 2. Atomic Structure .....                                        | <b>4-9</b>     |
| 3. Periodic Classification and Periodic Properties .....         | <b>10-11</b>   |
| 4. Chemical Bonding .....                                        | <b>12-17</b>   |
| 5. States of Matter .....                                        | <b>18-21</b>   |
| 6. Thermodynamics and Thermochemistry .....                      | <b>22-28</b>   |
| 7. Chemical and Ionic Equilibrium .....                          | <b>29-35</b>   |
| 8. s-Block Elements .....                                        | <b>36-37</b>   |
| 9. p-Block Elements-I .....                                      | <b>38-40</b>   |
| 10. Organic Chemistry-Some Basic Principles and Techniques ..... | <b>41-47</b>   |
| 11. Hydrocarbons .....                                           | <b>48-53</b>   |
| 12. Benzene and Alkyl Benzene .....                              | <b>54-58</b>   |
| 13. The Solid State .....                                        | <b>59-61</b>   |
| 14. Solutions and Colligative Properties .....                   | <b>62-65</b>   |
| 15. Redox Reactions and Electrochemistry .....                   | <b>66-74</b>   |
| 16. Chemical Kinetics .....                                      | <b>75-80</b>   |
| 17. Nuclear Chemistry .....                                      | <b>81-82</b>   |
| 18. Surface Chemistry .....                                      | <b>83-84</b>   |
| 19. Extraction of Metals .....                                   | <b>85-89</b>   |
| 20. p-Block Elements-II .....                                    | <b>90-97</b>   |
| 21. Transition and Inner-Transition Elements .....               | <b>98-101</b>  |
| 22. Coordination Compounds .....                                 | <b>102-107</b> |
| 23. Alkyl Halides .....                                          | <b>108-111</b> |
| 24. Aryl Halides and Phenols .....                               | <b>112-115</b> |
| 25. Alcohols and Ethers .....                                    | <b>116-118</b> |
| 26. Aldehydes and Ketones .....                                  | <b>119-126</b> |
| 27. Carboxylic Acids and their Derivatives .....                 | <b>127-132</b> |
| 28. Aliphatic Compounds Containing Nitrogen .....                | <b>133-134</b> |
| 29. Aromatic Compounds Containing Nitrogen .....                 | <b>135-141</b> |
| 30. Biomolecules .....                                           | <b>142-145</b> |
| 31. Polymers and Chemistry in Everyday Life .....                | <b>146-147</b> |
| 32. Qualitative Analysis of Inorganic Salts .....                | <b>148-153</b> |

## HINTS AND SOLUTIONS

|                                                          |                |
|----------------------------------------------------------|----------------|
| 1. Some Basic Concepts of Chemistry .....                | <b>157-161</b> |
| 2. Atomic Structure .....                                | <b>162-167</b> |
| 3. Periodic Classification and Periodic Properties ..... | <b>168-169</b> |
| 4. Chemical Bonding .....                                | <b>170-176</b> |
| 5. States of Matter .....                                | <b>177-182</b> |

|                                                                 |                |                                                    |                |
|-----------------------------------------------------------------|----------------|----------------------------------------------------|----------------|
| 6. Thermodynamics and Thermochemistry .....                     | <b>183-189</b> | 21. Transition and Inner-Transition Elements ..... | <b>263-265</b> |
| 7. Chemical and Ionic Equilibrium .....                         | <b>190-196</b> | 22. Coordination Compounds .....                   | <b>266-273</b> |
| 8. s-Block Elements .....                                       | <b>197-198</b> | 23. Alkyl Halides .....                            | <b>274-277</b> |
| 9. p-Block Elements-I .....                                     | <b>199-201</b> | 24. Aryl Halides and Phenols .....                 | <b>278-281</b> |
| 10. Organic Chemistry-Some Basic Principles and Techniques..... | <b>202-208</b> | 25. Alcohols and Ethers .....                      | <b>282-286</b> |
| 11. Hydrocarbons .....                                          | <b>209-217</b> | 26. Aldehydes and Ketones .....                    | <b>287-297</b> |
| 12. Benzene and Alkyl Benzene .....                             | <b>218-222</b> | 27. Carboxylic Acids and their Derivatives .....   | <b>298-305</b> |
| 13. The Solid State .....                                       | <b>223-225</b> | 28. Aliphatic Compounds Containing Nitrogen .....  | <b>306-307</b> |
| 14. Solutions and Colligative Properties.                       | <b>226-230</b> | 29. Aromatic Compounds Containing Nitrogen .....   | <b>308-316</b> |
| 15. Redox Reactions and Electrochemistry .....                  | <b>231-241</b> | 30. Biomolecules.....                              | <b>317-318</b> |
| 16. Chemical Kinetics .....                                     | <b>242-247</b> | 31. Polymers and Chemistry in Everyday Life.....   | <b>319-320</b> |
| 17. Nuclear Chemistry .....                                     | <b>248-249</b> | 32. Qualitative Analysis of Inorganic Salts.....   | <b>321-325</b> |
| 18. Surface Chemistry.....                                      | <b>250</b>     |                                                    |                |
| 19. Extraction of Metals.....                                   | <b>251-254</b> |                                                    |                |
| 20. p-Block Elements-II .....                                   | <b>255-262</b> |                                                    |                |

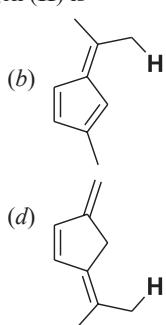
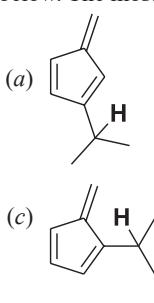
## Chemistry Paper-1

## SECTION 1 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (a), (b), (c) and (d). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:
 

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);



Negative Marks : -1 In all other cases.

1. The heating of  $\text{NH}_4\text{NO}_2$  at  $60 - 70^\circ\text{C}$  and  $\text{NH}_4\text{NO}_3$  at  $200 - 250^\circ\text{C}$  is associated with the formation of nitrogen containing compounds **X** and **Y**, respectively. **X** and **Y**, respectively, are
 

(a)  $\text{N}_2$  and  $\text{N}_2\text{O}$       (b)  $\text{NH}_3$  and  $\text{NO}_2$   
     (c)  $\text{NO}$  and  $\text{N}_2\text{O}$       (d)  $\text{N}_2$  and  $\text{NH}_3$
2. The correct order of the wavelength maxima of the absorption band in the ultraviolet-visible region for the given complexes is
 

(a)  $[\text{Co}(\text{CN})_6]^{3-} < [\text{Co}(\text{NH}_3)_6]^{3+} < [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} < [\text{Co}(\text{NH}_3)_5(\text{Cl})]^{2+}$   
     (b)  $[\text{Co}(\text{NH}_3)_5(\text{Cl})]^{2+} < [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} < [\text{Co}(\text{NH}_3)_6]^{3-} < [\text{Co}(\text{CN})_6]^{3-}$   
     (c)  $[\text{Co}(\text{CN})_6]^{3-} < [\text{Co}(\text{NH}_3)_5(\text{Cl})]^{2+} < [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} < [\text{Co}(\text{NH}_3)_6]^{3-}$   
     (d)  $[\text{Co}(\text{NH}_3)_6]^{3+} < [\text{Co}(\text{CN})_6]^{3-} < [\text{Co}(\text{NH}_3)_5(\text{Cl})]^{2+} < [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+}$
3. One of the products formed from the reaction of permanganate ion with iodide ion in neutral aqueous medium is
 

(a)  $\text{I}_2$       (b)  $\text{IO}_3^-$       (c)  $\text{IO}_4^-$       (d)  $\text{IO}_2^-$
4. Consider the depicted hydrogen (**H**) in the hydrocarbons given below. The most acidic hydrogen (**H**) is



## SECTION 2 (Maximum Marks: 12)

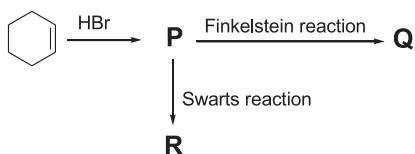
- This section contains **THREE (03)** questions.
- Each question has **FOUR** options (a), (b), (c) and (d). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:
 

Full Marks : +4 **ONLY** if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option;


Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.
- For example, in a question, if (a), (b) and (d) are the **ONLY** three options corresponding to correct answers, then choosing **ONLY** (a), (b) and (d) will get +4 marks; choosing **ONLY** (a) and (b) will get +2 marks; choosing **ONLY** (a) and (d) will get +2 marks; choosing **ONLY** (b) and (d) will get +2 marks; choosing **ONLY** (a) will get +1 mark; choosing **ONLY** (b) will get +1 mark; choosing **ONLY** (d) will get +1 mark; choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks.

5. Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the **INCORRECT** statement(s) is(are)
  - (a) Bond order of  $\text{Ne}_2$  is zero.
  - (b) The highest occupied molecular orbital (HOMO) of  $\text{F}_2$  is  $\sigma$ -type.
  - (c) Bond energy of  $\text{O}_2^+$  is smaller than the bond energy of  $\text{O}_2$ .
  - (d) Bond length of  $\text{Li}_2$  is larger than the bond length of  $\text{B}_2$ .
6. The pair(s) of diamagnetic ions is(are)
 

|                                                                     |                                                                     |
|---------------------------------------------------------------------|---------------------------------------------------------------------|
| <p>(a) <math>\text{La}^{3+}</math>, <math>\text{Ce}^{4+}</math></p> | <p>(b) <math>\text{Yb}^{2+}</math>, <math>\text{Lu}^{3+}</math></p> |
| <p>(c) <math>\text{La}^{2+}</math>, <math>\text{Ce}^{3+}</math></p> | <p>(d) <math>\text{Yb}^{3+}</math>, <math>\text{Lu}^{2+}</math></p> |

7. For the reaction sequence given below, the correct statement (s) is(are)



(In the options, X is any atom other than carbon and hydrogen, and it is different in **P**, **Q** and **R**)

- (a) C–X bond length in **P**, **Q** and **R** follows the order **Q** > **R** > **P**.
- (b) C–X bond enthalpy in **P**, **Q** and **R** follows the order **R** > **P** > **Q**.
- (c) Relative reactivity toward  $S_N2$  reaction in **P**, **Q** and **R** follows the order **P** > **R** > **Q**.
- (d)  $pK_a$  value of the conjugate acids of the leaving groups in **P**, **Q** and **R** follows the order **R** > **Q** > **P**.

### SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;  
Zero Marks : 0 In all other cases.

8. In an electrochemical cell, dichromate ions in aqueous acidic medium are reduced to  $Cr^{3+}$ . The current (in amperes) that flows through the cell for 48.25 minutes to produce 1 mole of  $Cr^{3+}$  is \_\_\_\_\_.

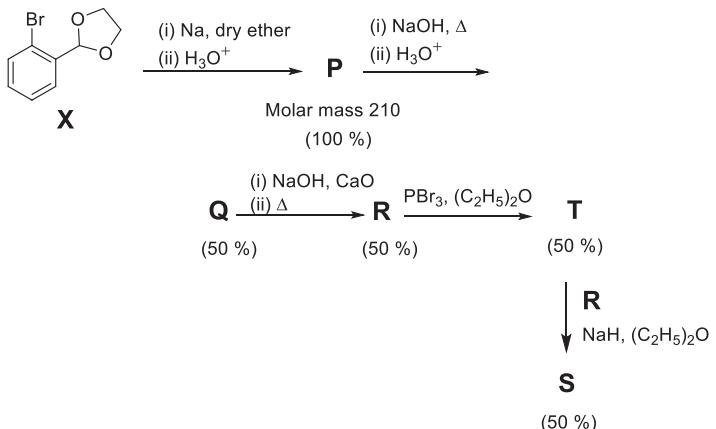
Use: 1 Faraday = 96500 C mol<sup>-1</sup>

9. At 25°C, the concentration of  $H^+$  ions in  $1.00 \times 10^{-3}$  M aqueous solution of a weak monobasic acid having acid dissociation constant ( $K_a$ ) of  $4.00 \times 10^{-11}$  is  $X \times 10^{-7}$  M. The value of **X** is \_\_\_\_\_.

Use: Ionic product of water ( $K_w$ ) =  $1.00 \times 10^{-14}$  at 25°C

10. Molar volume ( $V_m$ ) of a van der Waals gas can be calculated by expressing the van der Waals equation as a cubic equation with  $V_m$  as the variable. The ratio (in mol dm<sup>-3</sup>) of the coefficient of  $V_m^2$  to the coefficient of  $V_m^3$  for a gas having van der Waals constants  $a = 6.0$  dm<sup>6</sup> atm mol<sup>-2</sup> and  $b = 0.060$  dm<sup>3</sup> mol<sup>-1</sup> at 300 K and 300 atm is \_\_\_\_\_.

Use: Universal gas constant (R) = 0.082 dm<sup>3</sup> atm mol<sup>-1</sup> K<sup>-1</sup>.


11. Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is \_\_\_\_\_.

Use: Universal gas constant (R) = 8.3 J K<sup>-1</sup> mol<sup>-1</sup>; Atomic mass (in amu): H = 1, O = 16

12. The monomer (**X**) involved in the synthesis of Nylon 6,6 gives positive carbylamine test. If 10 moles of **X** are analyzed using Dumas method, the amount (in grams) of nitrogen gas evolved is \_\_\_\_\_.

Use: Atomic mass of N (in amu) = 14

13. The reaction sequence given below is carried out with 16 moles of **X**. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of **S** produced is \_\_\_\_\_.



Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80

### SECTION 4 (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- **List-I** has **Four** entries (P), (Q), (R) and (S) and **List-II** has **Five** entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on **List-I** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 **ONLY** if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

14. The correct match of the group reagents in **List-I** for precipitating the metal ion given in **List-II** from solutions, is

| List - I |                                                | List - II |           |
|----------|------------------------------------------------|-----------|-----------|
| (P)      | Passing $H_2S$ in the presence of $NH_4OH$     | (1)       | $Cu^{2+}$ |
| (Q)      | $(NH_4)_2CO_3$ in the presence of $NH_4OH$     | (2)       | $Al^{3+}$ |
| (R)      | $NH_4OH$ in the presence of $NH_4Cl$           | (3)       | $Mn^{2+}$ |
| (S)      | Passing $H_2S$ in the presence of dilute $HCl$ | (4)       | $Ba^{2+}$ |
|          |                                                | (5)       | $Mg^{2+}$ |

(a) (P) → (3); (Q) → (4); (R) → (2); (S) → (1)

(b) (P) → (4); (Q) → (2); (R) → (3); (S) → (1)

(c) (P) → (3); (Q) → (4); (R) → (1); (S) → (5)

(d) (P) → (5); (Q) → (3); (R) → (2); (S) → (4)

15. The major products obtained from the reactions in **List-II** are the reactants for the named reactions mentioned in **List-I**. Match each entry in **List-I** with the appropriate entry in **List-II** and choose the correct option.

| List - I |                    | List - II |                                                                             |
|----------|--------------------|-----------|-----------------------------------------------------------------------------|
| (P)      | Stephen reaction   | (1)       | $Toluene \xrightarrow{(i) CrO_3Cl_2/CS_2, (ii) H_3O^+}$                     |
| (Q)      | Sandmeyer reaction | (2)       | $Benzoic\ acid \xrightarrow{(i) PCl_5, (ii) NH_3, (iii) P_2O_{10}, \Delta}$ |

|     |                                         |     |                                                                                                                                                                      |
|-----|-----------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (R) | Hoffmann bromamide degradation reaction | (3) | Nitrobenzene $\xrightarrow{\substack{\text{(i) Fe, HCl} \\ \text{(ii) HCl, NaNO}_3 \\ (273-278\text{ K}), \text{H}_2\text{O}}}$                                      |
| (S) | Cannizzaro reaction                     | (4) | Toluene $\xrightarrow{\substack{\text{(i) Cl}_2/\text{hv, H}_2\text{O} \\ \text{(ii) Tollen's reagent} \\ \text{(iii) SO}_2\text{Cl}_2 \\ \text{(iv) NH}_3}}$        |
|     |                                         | (5) | Aniline $\xrightarrow{\substack{\text{(i) (CH}_3\text{CO)}_2\text{O, Pyridine} \\ \text{(ii) HNO}_3, \text{H}_2\text{SO}_4, 288\text{ K} \\ \text{(iii) aq. NaOH}}}$ |

(a) (P)  $\rightarrow$  (2); (Q)  $\rightarrow$  (4); (R)  $\rightarrow$  (1); (S)  $\rightarrow$  (3)  
 (b) (P)  $\rightarrow$  (2); (Q)  $\rightarrow$  (3); (R)  $\rightarrow$  (4); (S)  $\rightarrow$  (1)  
 (c) (P)  $\rightarrow$  (5); (Q)  $\rightarrow$  (3); (R)  $\rightarrow$  (4); (S)  $\rightarrow$  (2)  
 (d) (P)  $\rightarrow$  (5); (Q)  $\rightarrow$  (4); (R)  $\rightarrow$  (2); (S)  $\rightarrow$  (1)

16. Match the compounds in List-I with the appropriate observations in List-II and choose the correct option.

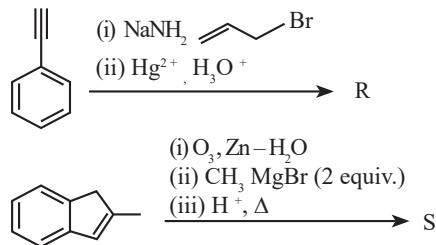
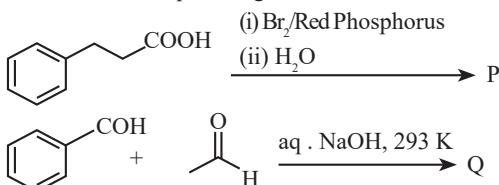
| List - I |  | List - II |                                                                                                |
|----------|--|-----------|------------------------------------------------------------------------------------------------|
| (P)      |  | (1)       | Reaction with phenyl diazonium salt gives yellow dye.                                          |
| (Q)      |  | (2)       | Reaction with ninhydrin gives purple color and it also reacts with FeCl3 to give violet color. |

|     |  |     |                                                                                                                        |
|-----|--|-----|------------------------------------------------------------------------------------------------------------------------|
| (R) |  | (3) | Reaction with glucose will give corresponding hydrazone.                                                               |
| (S) |  | (4) | Lassaigne extract of the compound treated with dilute HCl followed by addition of aqueous FeCl3 gives blood red color. |
|     |  | (5) | After complete hydrolysis, it will give ninhydrin test and it <b>DOES NOT</b> give positive phthalein dye test.        |

(a) (P)  $\rightarrow$  (1); (Q)  $\rightarrow$  (5); (R)  $\rightarrow$  (4); (S)  $\rightarrow$  (2)  
 (b) (P)  $\rightarrow$  (2); (Q)  $\rightarrow$  (5); (R)  $\rightarrow$  (1); (S)  $\rightarrow$  (3)  
 (c) (P)  $\rightarrow$  (5); (Q)  $\rightarrow$  (2); (R)  $\rightarrow$  (1); (S)  $\rightarrow$  (4)  
 (d) (P)  $\rightarrow$  (2); (Q)  $\rightarrow$  (1); (R)  $\rightarrow$  (5); (S)  $\rightarrow$  (3)

## Chemistry Paper-2

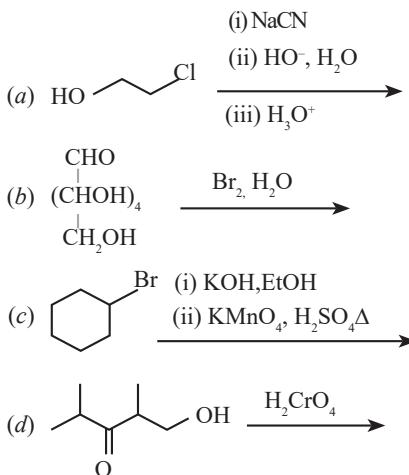
### SECTION 1 (Maximum Marks: 12)



- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (a), (b), (c) and (d). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated **according to the following marking scheme:**

Full Marks : +3 If **ONLY** the correct option is chosen;

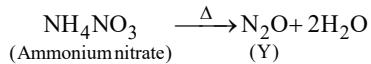
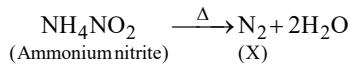
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.


- During sodium nitroprusside test of sulphide ion in an aqueous solution, one of the ligands coordinated to the metal ion is converted to  
 (a)  $\text{NOS}^-$  (b)  $\text{SCN}^-$  (c)  $\text{SNO}^-$  (d)  $\text{NCS}^-$
- The complete hydrolysis of  $\text{ICl}$ ,  $\text{ClF}_3$  and  $\text{BrF}_3$ , respectively, gives  
 (a)  $\text{IO}^-$ ,  $\text{ClO}_2^-$  and  $\text{BrO}_3^-$  (b)  $\text{IO}_3^-$ ,  $\text{ClO}_2^-$  and  $\text{BrO}_3^-$   
 (c)  $\text{IO}^-$ ,  $\text{ClO}^-$  and  $\text{BrO}_2^-$  (d)  $\text{IO}_3^-$ ,  $\text{ClO}_4^-$  and  $\text{BrO}_2^-$
- Monocyclic compounds P, Q, R and S are the major products formed in the reaction sequences given below.

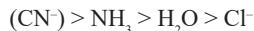


The product having the highest number of unsaturated carbon atom(s) is



(a) P (b) Q (c) R (d) S

4. The correct reaction/reaction sequence that would produce a dicarboxylic acid as the major product is



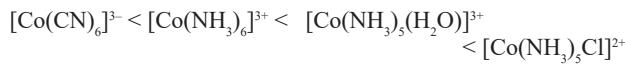

# Solutions Paper-1

1. (a) The reactions may be represented as:

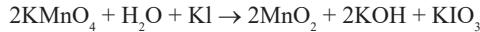


Hence, compounds X and Y are  $\text{N}_2$  and  $\text{N}_2\text{O}$  respectively.

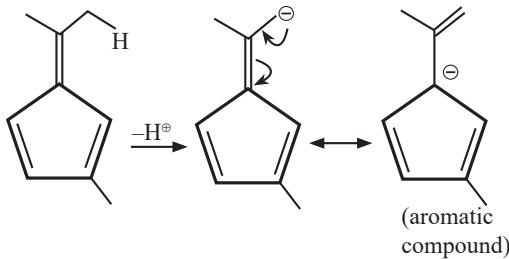
2. (a) The order of ligands with decreasing field strength in spectrochemical series is:




Stronger the ligand, more will be the crystal field splitting energy. Therefore, the order of  $\Delta_0$  is:

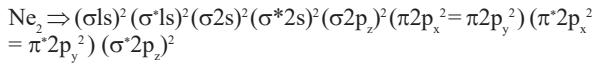



$$\because \text{Energy} \propto \frac{1}{\lambda}$$


$\therefore$  Order of  $\lambda_{\text{max}}$  will be:



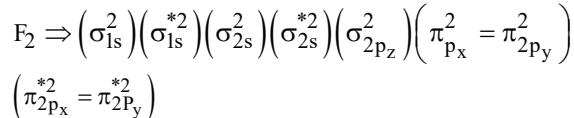
3. (b) In neutral aqueous medium, the reaction can be represented as:




4. (b) Since, the conjugate base formed in (b) is the most stable, therefore hydrogen (H) is the most acidic in (b).



5. (b, c)


(a) (a) is correct.



$$\text{As, bond order, BO} = \frac{\text{N}_b - \text{N}_a}{2}$$

$$\therefore \text{B.O.} = \frac{10 - 10}{2} = 0$$

(b) (b) is incorrect.



Therefore, the highest occupied molecular orbital (HOMO) of  $\text{F}_2$  is  $\pi$ -type not  $\sigma$ -type

(c) is incorrect.

Bond energy is directly proportional to the bond order.

Bond order of  $\text{O}_2$  is 2

Bond order of  $\text{O}_2^+$  is 2.5

Hence, bond energy of  $\text{O}_2^+ >$  bond energy of  $\text{O}_2$

(d) (d) is correct.

Bond length increase with increase in size of the atom. Size of Li is greater than that of B. Therefore, Bond length of  $\text{Li}_2$  is larger than that of  $\text{B}_2$ .

6. (a, b)

(a) Electronic configuration of  $\text{La}^{3+}$  :  $[\text{Xe}]4\text{f}^0$

Electronic configuration of  $\text{Ce}^{4+}$  :  $[\text{Xe}]4\text{f}^0$

Hence, both species are diamagnetic in nature

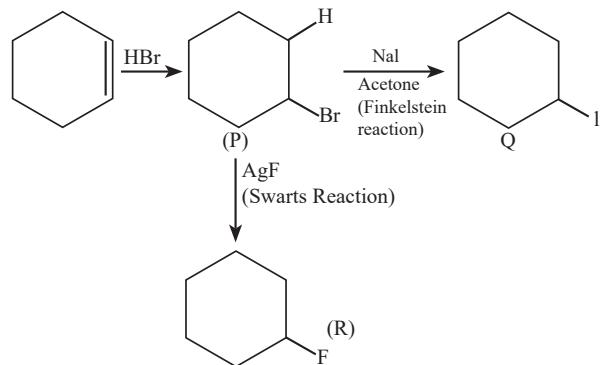
(b) Electronic configuration of  $\text{Yb}^{2+}$  :  $[\text{Xe}]4\text{f}^{14}$

Electronic configuration of  $\text{Lu}^{3+}$  :  $[\text{Xe}]4\text{f}^{14}$

Hence, both these species also diamagnetic in nature.

(c) Electronic configuration of  $\text{La}^{2+}$  :  $[\text{Xe}]5\text{d}^1$

Electronic configuration of  $\text{Ce}^{3+}$  :  $[\text{Xe}]4\text{f}^1$


Hence, both these species are paramagnetic in nature.

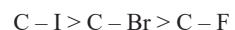
(d) Electronic configuration of  $\text{Yb}^{3+}$  :  $[\text{Xe}]4\text{f}^{13}$

Electronic configuration of  $\text{Lu}^{2+}$  :  $[\text{Xe}]4\text{f}^{14}5\text{d}^1$

Hence, both species are paramagnetic in nature.

7. (b) The given reaction sequence is:




(a) Since, the bond length follows the order:  $\text{C} - \text{F} < \text{C} - \text{Br} < \text{C} - \text{I}$

Therefore, the  $\text{C} - \text{X}$  bond length in P, Q and R follows the order:  $\text{R} < \text{P} < \text{Q}$

(b) Since, bond enthalpy  $\propto \frac{1}{\text{bond length}}$

Therefore, the correct order of  $\text{C}-\text{X}$  bond enthalpy  $\Rightarrow \text{R} > \text{P} > \text{Q}$

(c) The correct order of reactivity towards  $\text{S}_N2$  reaction is:

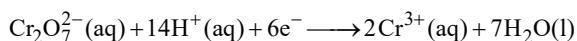


Therefore, the reactivity will follow the order:  $\text{Q} > \text{P} > \text{R}$

(d)

| Compound       | P                   | Q                  | R                  |
|----------------|---------------------|--------------------|--------------------|
| Leaving group  | $\text{Br}^\ominus$ | $\text{I}^\ominus$ | $\text{F}^\ominus$ |
| conjugate acid | HBr                 | Hl                 | HF                 |

The correct order of acidity is:  $\text{HF} < \text{HBr} < \text{Hl}$


As, lesser the value of  $\text{pK}_a$ , more will be the acidity.

Therefore,  $\text{pK}_a$  order:  $\text{Hl} < \text{HBr} < \text{HF}$

$\text{Q} < \text{P} < \text{R}$

8. (100.00)

The balanced chemical reaction is:



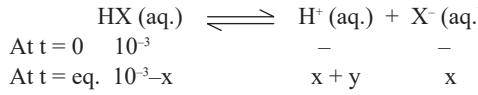
$$\therefore n_{\text{factor}} = 3$$

gram equivalent of  $\text{Cr}^{3+}$  produced = Faraday of charge passed

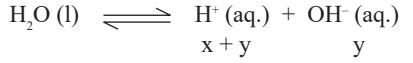
$$\text{Number of Moles} \times n_{\text{factor}} = \frac{I \times t}{96500}$$

Given, number of moles = 1

$$1 \times 3 = \frac{I \times 2895}{96500} \quad [t = 48.25 \text{ min} = 2895 \text{ sec}]$$


$$I = \frac{1 \times 3 \times 96500}{2895}$$

$$\Rightarrow I = 100 \text{ A}$$


9. (02.24)

Since, the concentration of  $\text{H}^+$  from the weak acid is very less, the contribution of  $\text{H}^+$  from the self-ionization of water must be considered.

From acid dissociation :



From water ionization :



Using approximation,  $(10^{-3} - x) \approx 10^{-3}$

$$\therefore K_a = \frac{x(x+y)}{10^{-3}} = 4 \times 10^{-11}$$

$$K_a = x(x+y) = 4 \times 10^{-14}$$

Now, from ionization of water:

$$K_w = y(x+y) = 10^{-14}$$

On adding eq. (i) and (ii), we get:

$$(x+y)^2 = (4 \times 10^{-14}) + (1 \times 10^{-14})$$

$$(x+y)^2 = 5 \times 10^{-14}$$

$$(x+y) = [\text{H}^+] = 5 \times 10^{-14}$$

$$\Rightarrow [\text{H}^+] = \sqrt{5} \times 10^{-7}$$

$$\therefore x = \sqrt{5} = 2.236 \approx 2.24$$

10. (-07.10)

Van der Waals equation is:

$$\left( P + \frac{a}{V_m^2} \right) (V_m - b) = RT$$

$$\left[ \frac{PV_m^2 + a}{Vm^2} \right] (V_m - b) = RT$$

$$PV_m^3 - PbV_m^2 - RTV_m^2 + aV_m - ab = 0$$

On dividing this equation by P, we get:

$$V_m^3 - \left( b + \frac{RT}{P} \right) V_m^2 + \frac{aV_m}{P} - \frac{ab}{P} = 0$$

Therefore, ratio of coefficient of  $V_m^2$  to that of the coefficient of  $V_m$  is:

$$\frac{\text{coefficient of } V_m^2}{\text{coefficient of } V_m} = \frac{-\left( b + \frac{RT}{P} \right)}{\frac{a}{P}} = \frac{-\left[ \frac{bP + RT}{P} \right]}{\frac{a}{P}}$$

$$= -\left( \frac{bP + RT}{a} \right)$$

$$= -\left( \frac{0.06 \times 300 + 0.082 \times 300}{a} \right)$$

(Given: b = 0.060  $\text{dm}^3 \text{mol}^{-1}$ , P = 300 atm and T = 300 K)

$$= -\frac{42.6}{6} = -7.10$$

11. (29.88)

$$\text{No. of moles of } \text{H}_2\text{O} = \frac{144}{18} = 8 \text{ moles}$$



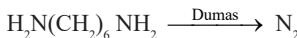
According to the reaction,

2 moles water  $\rightarrow$  3 moles of gases

Therefore, 8 moles water  $\rightarrow \frac{3}{2} \times 8 = 12$  moles of gases

i.e; change in gaseous moles = 12

As, we know that,


$$W = -P\Delta V = -(Δn)_{\text{g}} RT$$

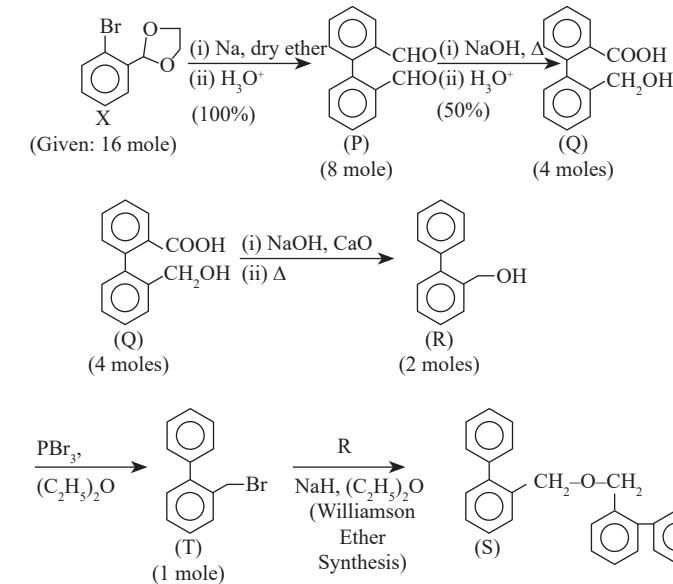
$$\therefore W = -12 \times 8.3 \times 300 \text{ J} = -29880 \text{ J}$$

$$= -29880 \times 10^{-3} \text{ kJ} = -29.88 \text{ kJ}$$

12. (280.00)

The monomers of Nylon 6,6 are hexamethylene diamine and adipic acid. Hexamethylene diamine is a primary amine and hence, can give positive carbonylamine test. Therefore, the monomer (X) is hexamethylene diamine.




According to the reaction, 1 mole of X gives 1 mole of  $\text{N}_2$

$\therefore$  10 moles of X will give 10 moles of  $\text{N}_2$

$\therefore$  Mass of  $\text{N}_2$  formed =  $10 \times 28 = 280 \text{ g}$

13. (175.00)

The given reaction sequence is :



Molecular formula of S is  $(\text{C}_6\text{H}_4)_2 (\text{C}_6\text{H}_5)_2 \text{C}_2\text{H}_4\text{O}$

$\therefore$  Molecular mass = 350  $\text{g mol}^{-1}$

As, the yield is 50%

$\therefore$  Mass of S produced is  $\frac{1}{2} \times 350 = 175 \text{ g}$

## JEE-Advanced

### Mole Concept, Percentage Composition, Molar Masses, and Empirical Formula

#### Single Correct

- An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is **(IIT JEE 2001)**  
(a) 40 mL (b) 20 mL (c) 10 mL (d) 4 mL
- The normality of 0.3M phosphorus acid ( $\text{H}_3\text{PO}_3$ ) is **(IIT JEE 1999)**  
(a) 0.1 (b) 0.9 (c) 0.3 (d) 0.6
- In which mode of expression, the concentration of a solution remains independent of temperature? **(IIT JEE 1998)**  
(a) Molarity (b) Normality  
(c) Formality (d) Molality
- The volume strength of 1.5  $\text{NH}_2\text{O}_2$  is **(IIT JEE 1990)**  
(a) 4.8 (b) 8.4 (c) 3.0 (d) 8.0
- A molal solution is one that contains one mole of solute in **(IIT JEE 1986)**  
(a) 1000 g of solvent (b) 1.0 L of solvent  
(c) 1.0 L of solution (d) 22.4 L of solution
- If 0.50 mole of  $\text{BaCl}_2$  is mixed with 0.20 mole of  $\text{Na}_3\text{PO}_4$ , the maximum number of moles of  $\text{Ba}_3(\text{PO}_4)_2$  that can be formed is **(IIT JEE 1981)**  
(a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10
- The total number of electrons in one molecule of carbon dioxide is **(IIT JEE 1979)**  
(a) 22 (b) 44 (c) 68 (d) 88

#### Numerical/Integer Type

- To form a complete monolayer of acetic acid on 1g of charcoal, 100 mL of 0.5M acetic acid was used. Some of the acetic acid remained unadsorbed. To neutralize the unadsorbed acetic acid, 40 mL of 1 M NaOH solution was required. If each molecule of acetic acid occupies  $P \times 10^{-23} \text{ m}^2$  surface area on charcoal, the value of P is \_\_\_\_\_.  
[Use given data: Surface area of charcoal =  $1.5 \times 10^2 \text{ m}^2\text{g}^{-1}$ ; Avogadro's number ( $N_A$ ) =  $6.0 \times 10^{23} \text{ mol}^{-1}$ ]  
**C-15.73 W-60.25 UA-24.03 (JEE Adv. 2024)**

9. Aluminium reacts with sulphuric acid to form aluminium sulphate and hydrogen. What is the volume of hydrogen gas in litre (L) produced at 300 K and 1.0 atm pressure, when 5.4 g of aluminium and 50.0 mL of 5.0 M sulphuric acid are combined for the reaction? (Use molar mass of aluminium as  $27.0 \text{ g mol}^{-1}$ ,  $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$ ) **C-18.21 W-64.19 UA-17.6 PC-0 (JEE Adv. 2020)**

- The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is  $1.2 \text{ g cm}^{-3}$ , the molarity of urea solution is \_\_\_\_\_.  
(Given data: Molar masses of urea and water are  $60 \text{ g mol}^{-1}$  and  $18 \text{ g mol}^{-1}$ , respectively)

**C-17.05 W-70.35 UA-12.61 (JEE Adv. 2019)**

- The mole fraction of a solute in a solution is 0.1. At 298 K, molarity of this solution is the same as its molality. Density of this solution at 298 K is  $2.0 \text{ g cm}^{-3}$ . The ratio of the molecular weights of the solute and solvent,  $\left( \frac{m_{\text{solute}}}{m_{\text{solvent}}} \right)$  is ...

**C-28.66 W-66.23 UA-5.11 (JEE Adv. 2016)**

- A compound  $\text{H}_2\text{X}$  with molar weight of 80 g is dissolved in a solvent having density of  $0.4 \text{ g mL}^{-1}$ . Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is

**C-39.97 W-51.56 UA-8.47 (JEE Adv. 2014)**

- 29.2% (w/W) HCl stock solution has density of  $1.25 \text{ g mL}^{-1}$ . The molecular weight of HCl is  $36.5 \text{ g mol}^{-1}$ . The volume (mL) of stock solution required to prepare a 200 mL solution 0.4 M HCl is

**C-15.53 W-67.67 UA-16.8 (IIT JEE 2012)**

#### Fill in the Blanks

- 3.0 g of a salt of molecular weight 30 is dissolved in 250 g water. The molality of the solution is ..... **(IIT JEE 1983)**
- The total number of electrons present in 18 mL of water is ..... **(IIT JEE 1980)**

#### Subjective

- 20% surface sites have adsorbed  $\text{N}_2$ . On heating  $\text{N}_2$  gas evolved from sites and were collected at 0.001 atm and 298 K in a container of volume is  $2.46 \text{ cm}^3$ . Density of surface sites is  $6.023 \times 10^{14} \text{ cm}^{-2}$  and surface area is  $1000 \text{ cm}^2$ , find out the number of surface sites occupied per molecule of  $\text{N}_2$ . **(IIT JEE 2005)**

17. Calculate the amount of calcium oxide required when it reacts with 852 g of  $\text{P}_4\text{O}_{10}$ . (IIT JEE 2005)

18. In a solution of 100 mL 0.5 M acetic acid, one gram of active charcoal is added, which adsorbs acetic acid. It is found that the concentration of acetic acid becomes 0.49M. If surface area of charcoal is  $3.01 \times 10^2 \text{ m}^2$ , calculate the area occupied by a single acetic acid molecule on the surface of charcoal. (IIT JEE 2003)

19. Find the molarity of water. Given:  $\rho = 1000 \text{ kg/m}^3$  (IIT JEE 2003)

20. How many millilitres of 0.5M  $\text{H}_2\text{SO}_4$  are needed to dissolve 0.5 g of copper (II) carbonate? (IIT JEE 1999)

21. An aqueous solution containing 0.10 g  $\text{KIO}_3$  (formula weight = 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated  $\text{I}_2$  consumed 45.0 mL of thiosulphate solution decolourise the blue starch-iodine complex. Calculate the molarity of the sodium thiosulphate solution. (IIT JEE 1998)

22. To a 25 mL  $\text{H}_2\text{O}_2$  solution, excess of acidified solution of potassium iodide was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution. Calculate the volume strength of  $\text{H}_2\text{O}_2$  solution (IIT JEE 1997)

23. A  $5.0 \text{ cm}^3$  solution of  $\text{H}_2\text{O}_2$  liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of  $\text{H}_2\text{O}_2$  solution in terms of volume strength at STP. (IIT JEE 1995)

24.  $8.0575 \times 10^{-2}$  kg of Glauber's salt is dissolved in water to obtain 1  $\text{dm}^3$  of solution of density  $1077.2 \text{ kg m}^{-3}$ . Calculate the molality, molarity and mole fraction of  $\text{Na}_2\text{SO}_4$  in solution. (IIT JEE 1994)

25. Upon mixing 45.0 mL, 0.25 M lead nitrate solution with 25.0 mL of a 0.10 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also calculate the molar concentrations of species left behind in the final solution. Assume that lead sulphate is completely insoluble. (IIT JEE 1993)

26. Calculate the molality of 1.0 L solution of 93%  $\text{H}_2\text{SO}_4$ , (weight/volume). The density of the solution is 1.84 g/mL. (IIT JEE 1990)

27. n-butane is produced by monobromination of ethane followed by Wurtz's reaction. Calculate volume of ethane at NTP required to produce 55 g n-butane, if the bromination takes place with 90% yield and the Wurtz's reaction with 85% yield. (IIT JEE 1989)

28. A sugar syrup of weight 214.2 g contains 34.2 g of sugar ( $\text{C}_{12}\text{H}_{22}\text{O}_{11}$ ). Calculate (i) molal concentration and (ii) mole fraction of sugar in syrup (IIT JEE 1988)

29. An unknown compound of carbon, hydrogen and oxygen contains 69.77% C and 11.63% H and has a molecular weight of 86. It does not reduce Fehling's solution but forms a bisulfite addition compound and gives a positive iodoform test. What is the possible structure(s) of unknown compounds? (IIT JEE 1987)

30. The density of a 3M sodium thiosulphate solution ( $\text{Na}_2\text{S}_2\text{O}_3$ ) is 1.25 g per mL. Calculate (i) the percentage by weight of sodium thiosulphate (ii) the mole fraction of sodium thiosulphate and (iii) the molalities of  $\text{Na}^+$  and  $\text{S}_2\text{O}_3^{2-}$  ions. (IIT JEE 1983)

31. In the analysis of 0.5 g sample of feldspar, a mixture of chlorides of sodium and potassium is obtained, which weighs 0.1180 g. Subsequent treatment of the mixed chlorides with silver nitrate gives 0.2451 g of silver chloride. What is the percentage of sodium oxide and potassium oxide in the sample? (IIT JEE 1979)

32. The vapor density (hydrogen = 1) of a mixture consisting of  $\text{NO}_2$  and  $\text{N}_2\text{O}_4$  is 38.3 at 26.7°C. Calculate the number of moles of  $\text{NO}_2$  in 100 g of the mixture. (IIT JEE 1979)

## Uncertainty in Measurement and Laws of Chemical Combinations, Atomic and Molecular Masses, Stoichiometry and Stoichiometric Calculation

### Single Correct

33. 2.76 g of silver carbonate on being strongly heated yields a residue weighing (IIT JEE 1979)  
 (a) 2.16 g (b) 2.48 g (c) 2.32 g (d) 2.64 g

34. When the same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide, the ratio of volumes of hydrogen evolved is (IIT JEE 1979)  
 (a) 1:1 (b) 1:2  
 (c) 2:1 (d) 9 : 4

35. The largest number of molecules is in (IIT JEE 1979)  
 (a) 36 g of water  
 (b) 28 g of CO  
 (c) 46 g of ethyl alcohol  
 (d) 54 g of nitrogen pentoxide ( $\text{N}_2\text{O}_5$ )

36. A gaseous mixture contains oxygen and nitrogen in the ratio of 1:4 by weight. Therefore, the ratio of their number of molecules is (IIT JEE 1979)  
 (a) 1:4 (b) 1:8 (c) 7:32 (d) 88

### Multiple Correct

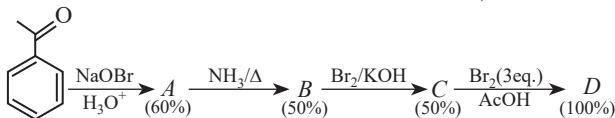
37. To check the principle of multiple proportions, a series of pure binary compounds ( $\text{P}_m\text{Q}_n$ ) were analyzed and their composition is tabulated below. The correct option(s) is(are)  
 C-14.77 W-26.73 UA-39.64 (JEE Adv. 2022)

| Compound | Weight % of P | Weight % of Q |
|----------|---------------|---------------|
| 1        | 50            | 50            |
| 2        | 44.4          | 55.6          |
| 3        | 40            | 60            |

(a) If empirical formula of compound 3 is  $\text{P}_3\text{Q}_4$ , then the empirical formula of compound 2 is  $\text{P}_3\text{Q}_5$ .  
 (b) If empirical formula of compound 3 is  $\text{P}_3\text{Q}_2$  and atomic weight of element P is 20, then the atomic weight of Q is 45.  
 (c) If empirical formula of compound 2 is  $\text{PQ}$ , then the empirical formula of the compound 1 is  $\text{P}_5\text{Q}_4$ .  
 (d) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is  $\text{P}_2\text{Q}$ .

### Numerical/Integer Type

38. The stoichiometric reaction of 516 g of dimethyldi-chlorosilane with water results in a tetrameric cyclic product X in 75% yield. The weight (in g) of X obtained is \_\_\_\_\_.  
 [Use, molar mass ( $\text{g mol}^{-1}$ ): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]  
 C-3.16 W-59.71 UA-37.13 (JEE Adv. 2023)


39. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives gas Q. The amount of  $\text{CuSO}_4$  (in g) required to completely consume the gas Q is \_\_\_\_\_.  
 [Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63] C-1.78 W-53.98 UA-44.24 (JEE Adv. 2022)

40. Galena (an ore) is partially oxidized by passing air through it at high temperature. After some time, the passage of air is stopped, but the heating is continued in a closed furnace such that the contents undergo self-reduction. The weight (in Kg) of Pb produced per kg of O<sub>2</sub> consumed is  
(Atomic weights in g/mol : O = 16, S = 32, Pb = 207 )

**C-8.91 W-71.9 UA-19.2 (JEE Adv. 2018)**

41. In the following reaction sequence, the amount of D (in gram) formed from 10 moles of acetophenone is .....  
(Atomic weights in g mol<sup>-1</sup> : H = 1, C = 12, N = 14, O = 16, Br = 80. The yield (%) corresponding to the product in each step is given in the parenthesis)

**C-7.27 W-72.1 UA-20.63 (JEE Adv. 2018)**



42. A student performs a titration with different burettes and finds titrate values of 25.2 mL, 25.25 mL, and 25.0 mL. The number of significant figures in the average titrate value is **(IIT JEE 2010)**

**Fill in the Blanks**

43. The compound YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>, which shows super conductivity, has copper in oxidation state ..... Assume that the rare earth element yttrium is in its usual +3 oxidation state. **(IIT JEE 1994)**

44. The weight of  $1 \times 10^{22}$  molecules of CuSO<sub>4</sub>·5H<sub>2</sub>O is \_\_\_\_\_. **(IIT JEE 1991)**

45. The modern atomic mass unit is based on the mass of \_\_\_\_\_. **(IIT JEE 1980)**

**Subjective**

46. A plant virus is found to consist of uniform cylindrical particles of 150 in diameter and 5000 angstrom long. The specific volume of the virus is 0.75 cm<sup>3</sup>/g. If the virus is considered to be a single particle, find its molar mass. **(IIT JEE 1999)**

47. A 3.00 g sample containing Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub> and an inert impure substance, is treated with excess of KI solution in presence of dilute H<sub>2</sub>SO<sub>4</sub>. The entire iron is converted into Fe<sup>2+</sup> along with the liberation of iodine. The resulting solution is diluted to 100 mL. A 20 mL of the diluted solution requires 11.0 mL of 0.5MNa<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution to reduce the iodine present. A 50 mL of the dilute solution, after complete extraction of the

iodine required 12.80 mL of 0.25MKMnO<sub>4</sub> solution in dilute H<sub>2</sub>SO<sub>4</sub> medium for the oxidation of Fe<sup>2+</sup>. Calculate the percentage of Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> in the original sample. **(IIT JEE 1996)**

48. A 20.0 cm<sup>3</sup> mixture of CO, CH<sub>4</sub> and He gases is exploded by an electric discharge at room temperature with excess of oxygen. The volume contraction is found to be 13.0 cm<sup>3</sup>.

A further contraction of 14.0 cm<sup>3</sup> occurs when the residual gas is treated with KOH solution. Find out the composition of the gaseous mixture in terms of volume percentage. **(IIT JEE 1995)**

49. A is a binary compound of a univalent metal. 1.422 g of A reacts completely with 0.321 g of sulphur in an evacuated and sealed tube to give 1.743 g of a white crystalline solid B, that forms a hydrated double salt, C with Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. Identify A, B and C. **(IIT JEE 1994)**

50. One gram of commercial AgNO<sub>3</sub> is dissolved in 50 mL of water. It is treated with 50 mL of a KI solution. The silver iodide thus precipitated is filtered off. Excess of KI in the filtrate is titrated with (M/10) KIO<sub>3</sub> solution in presence of 6 M HCl till all I<sup>-</sup> ions are converted into ICl. It requires 50 mL of (M/10) KIO<sub>3</sub> solution, 20 mL of the same stock solution of KI requires 30 mL of (M/10) KIO<sub>3</sub> under similar conditions. Calculate the percentage of AgNO<sub>3</sub> in the sample.

Reaction  $\text{KIO}_3 + 2\text{KI} + 6\text{HCl} \rightarrow 3\text{ICl} + 3\text{KCl} + 3\text{H}_2\text{O}$

**(IIT JEE 1991)**

51. A solid mixture (5.0 g) consisting of lead nitrate and sodium nitrate was heated below 600°C until the weight of the residue was constant. If the loss in weight is 28.0 per cent, find the amount of lead nitrate and sodium nitrate in the mixture. **(IIT JEE 1990)**

52. 1.0 L of a mixture of CO and CO<sub>2</sub> is taken. This mixture is passed through a tube containing red hot charcoal. The volume now becomes 1.6 L. The volumes are measured under the same conditions. Find the composition of the mixture by volume. **(IIT JEE 1980)**

53. 5.00 mL of a gas containing only carbon and hydrogen were mixed with an excess of oxygen (30 mL) and the mixture exploded by means of electric spark. After explosion, the volume of the mixed gases remaining was 25 mL. On adding a concentrated solution of KOH, the volume further diminished to 15 mL, the residual gas being pure oxygen. All volumes have been reduced to NTP. Calculate the molecular formula of the hydrocarbon gas. **(IIT JEE 1979)**

54. Accounts for the following. Limit your answer to two sentences, "Atomic weights of most of the elements are fractional". **(IIT JEE 1979)**

**ANSWER KEY**

1. (a) 2. (d) 3. (d) 4. (b) 5. (a) 6. (d) 7. (a) 8. [2500] 9. [6.15]  
 10. [2.98 or 2.99] 11. [9] 12. [8] 13. [8] 14. [0.4] 15. [6.023 × 10<sup>24</sup>] 33. (a) 34. (a)  
 35. (a) 36. (c) 37. (b,c) 38. [222] 39. [2.385] 40. [6.47] 41. [495] 42. [3] 43. [7/3] 44. [4.14 g]  
 45. C-12 isotopes

