

*Ace Your Exams
with*

Last Minute **HACKS**

INSIDE YOU'LL FIND

- * **ALL DIAGRAMS**
- * **COMPLETE FORMULAS & CHEMICAL REACTIONS**
- * **SOCIAL SCIENCE MAPS**

CONTENTS

1. Maths	1-8
2. Physics	9
3. Chemistry	10-19
4. SST	20-38
5. Biology	39-57

Theorems and Formulas

REAL NUMBERS

Theorem: Every composite number can be expressed (factorized) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.

NOTE: Fundamental theorem of arithmetic is called a Unique Factorisation Theorem.

Composite number = Product of prime numbers.

Important Formulas

For any two positive integers a and b we have,

$$\text{H.C.F}(a, b) \times \text{L.C.M}(a, b) = a \times b.$$

POLYNOMIALS

Theorem: If α and β are the zeroes of a quadratic polynomial $f(x)$, then the polynomial $f(x)$ is given by

$$f(x) = k\{x^2 - (\alpha + \beta)x + \alpha\beta\}$$

OR

$$f(x) = k\{x^2 - (\text{Sum of the zeroes})x + \text{Product of the zeroes}\}$$

where k is any non-zero real number.

Important Formulas

Relationship between Zeroes and Coefficients of a Polynomial: In general,

If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, $a \neq 0$, then

$$\alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2} \text{ and}$$

$$\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}.$$

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Important Formulas

Algebraic condition for nature of lines and the number of solutions:

Pair of linear equations $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$	Algebraic conditions	Graphical representation	Algebraic interpretation
Consistent (Independent)	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting lines	Exactly one solution (unique solution)
Consistent (Dependent)	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincident lines	Infinitely many solutions – dependent
In-consistent	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Pair of parallel lines	No solution

QUADRATIC EQUATIONS

Let the given equation be $ax^2 + bx + c = 0$, where $a \neq 0$. Then, the discriminant is given by $D = b^2 - 4ac$, and the roots of the given equation are

$$\alpha = \frac{-b + \sqrt{D}}{2a} \text{ and } \beta = \frac{-b - \sqrt{D}}{2a}.$$

Case 1: When $D > 0$

In this case, the roots are real and distinct. These roots are given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} \text{ and } \beta = \frac{-b - \sqrt{D}}{2a}.$$

Case 2: When $D = 0$

In this case, the roots are real and equal.

$$\text{Each root} = \frac{(-b)}{2a}.$$

Case 3: When $D < 0$

In this case, the roots are imaginary, and we say that the given equation has no real roots.

Note:

In this case $D > 0$, if D is a perfect square then roots are rational and if D is a non-perfect square then roots are irrational.

Important Formulas

- Quadratic Formula (Shridharacharya Formula): The roots of a quadratic equation $ax^2 + bx + c = 0$ are given by $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

ARITHMETIC PROGRESSIONS

Important Formulas

- Common difference $d = a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1}$
- In an AP with first term a and common difference d , the n^{th} term (or the general term) is given by $a_n = a + (n - 1)d$.

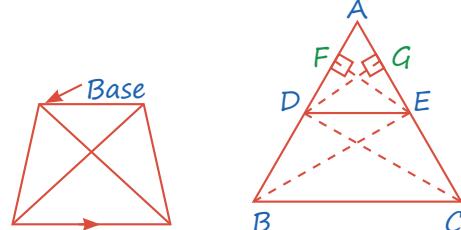
- The n^{th} term of an AP from the end with first term a , common difference d and last term l is given by $a_n = l - (n - 1)d$.

- The sum of first n -terms of an AP is given by

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

Here a = first term, n = number of terms and d = common difference.

- If l is the last term of an AP, then sum of all terms is given by

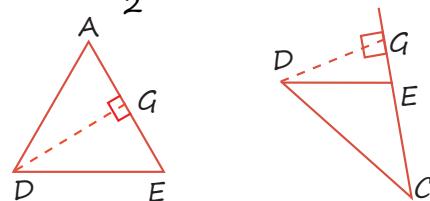

$$S_n = \frac{n}{2} [a + l]$$

- The n^{th} term of an AP is the difference of the sum to first n terms and the sum to first $(n-1)$ terms of it, i.e., $a_n = S_n - S_{n-1}$.

TRIANGLES

Theorem 1: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

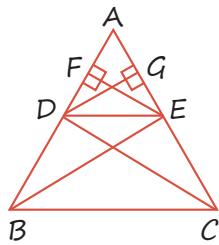
Proof:

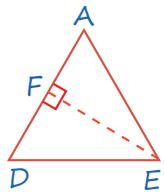

Given: $DE \parallel BC$

To Prove: $\frac{AD}{BD} = \frac{AE}{EC}$

Construction: Draw $DG \perp AE$ and $EF \perp AD$. Also, Join DC and BE .

Proof: Area of $\triangle ADE = \frac{1}{2} \times AE \times DG$... (1)


Area of $\triangle DEC = \frac{1}{2} \times EC \times DG$... (2)


1 ÷ 2

$$\frac{\text{Ar}(ADE)}{\text{Ar}(DEC)} = \frac{\frac{1}{2} \times AE \times DG}{\frac{1}{2} \times EC \times DG}$$

$$\frac{\text{Ar}(ADE)}{\text{Ar}(DEC)} = \frac{AE}{EC}$$

$$\text{Ar}(ADE) = \frac{1}{2} \times AD \times EF \quad \dots(3)$$

$$\text{Ar}(DBE) = \frac{1}{2} \times DB \times EF \quad \dots(4)$$

3 ÷ 4

$$\frac{\text{Ar}(ADE)}{\text{Ar}(DBE)} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF}$$

$$\rightarrow \frac{\text{Ar}(ADE)}{\text{Ar}(DBE)} = \frac{AD}{DB}$$

$$\text{Ar}(DEC) = \text{Ar}(DBE)$$

Since, Δ's on the same base and between same parallel

$$\frac{\text{Ar}(ADE)}{\text{Ar}(DEC)} = \frac{\text{Ar}(ADE)}{\text{Ar}(DBE)}$$

$$\frac{AE}{EC} = \frac{AD}{DB} \quad \text{Hence Proved}$$

Theorem 2: (Converse of Basic Proportionality theorem (BPT)). If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

Proof:

$$\text{Given: } \frac{AD}{DB} = \frac{AE}{EC} \quad \dots(1)$$

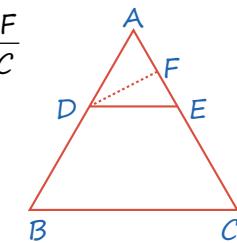
To prove: $DE \parallel BC$

Construction: Draw DF parallel to BC, such that

$$\frac{AD}{DB} = \frac{AF}{FC} \quad \dots(2)$$

Proof: By (1) and (2), $\frac{AE}{EC} = \frac{AF}{FC}$

add 1 to both sides


$$\Rightarrow \frac{AE}{EC} + 1 = \frac{AF}{FC} + 1$$

$$\frac{AE + EC}{EC} = \frac{AF + FC}{FC}, \frac{AC}{EC} = \frac{AC}{FC}$$

$$\frac{AC}{EC} = \frac{AC}{FC}, \frac{1}{EC} = \frac{1}{FC}$$

$FC = EC$ This means that 'E' & 'F' coincides

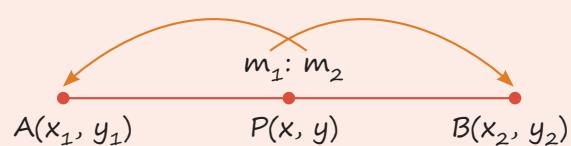
$\therefore DE \parallel BC$ Hence, Proved.

Criteria for similarity of Triangles

(i) AAA similarity criterion

(ii) SSS similarity criterion

(iii) SAS similarity criterion


COORDINATE GEOMETRY

Important Formulas

□ **Distance Formula:** The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

□ **Distance from Origin:** The distance of a point $P(x, y)$ from origin is $\sqrt{x^2 + y^2}$.

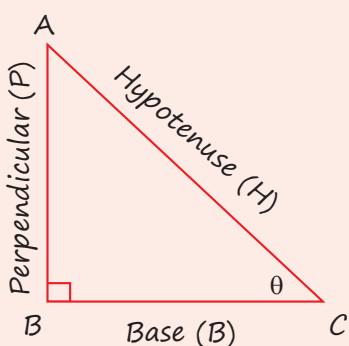
□ **Section Formula:** The coordinates of the point $P(x, y)$ which divides the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio $m_1 : m_2$ are $\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right)$

□ **Mid Point Formula:** The mid-point of the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

INTRODUCTION TO TRIGONOMETRY

Important Concepts:


θ	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined
cosec	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined
cot	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Important Formulas

Trigonometric Ratios

The ratio of the sides of a right angle triangle with respect to acute angles are called "Trigonometric ratios of the angle":

In right angled $\triangle ABC$

□ sine of θ , written as

$$\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{P}{H} = \frac{\text{Pandit}}{\text{Har}}$$

□ cosine of θ , written as

$$\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{B}{H} = \frac{\text{Badri}}{\text{Har}}$$

□ tangent of θ , written as

$$\tan\theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{P}{B} = \frac{\text{Prasad}}{\text{Bhole}}$$

□ cosecant of θ , written as

$$\cosec\theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{H}{P}$$

□ secant of θ , written as

$$\sec\theta = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{H}{B}$$

□ cotangent of θ , written as

$$\cot\theta = \frac{\text{Base}}{\text{Perpendicular}} = \frac{B}{P}$$

Trick to Remember

Relation Between Trigonometric Ratio

$$\square \sin\theta = \frac{1}{\cosec\theta} \Rightarrow \cosec\theta = \frac{1}{\sin\theta}$$

$$\square \cos\theta = \frac{1}{\sec\theta} \Rightarrow \sec\theta = \frac{1}{\cos\theta}$$

$$\square \tan\theta = \frac{1}{\cot\theta} \Rightarrow \cot\theta = \frac{1}{\tan\theta}$$

$$\square \tan\theta = \frac{\sin\theta}{\cos\theta} \Rightarrow \cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\square \sin^2\theta + \cos^2\theta = 1$$

$$\square 1 + \tan^2\theta = \sec^2\theta$$

$$\square 1 + \cot^2\theta = \cosec^2\theta$$

Physics Formulas

Light: Reflection and Refraction

Relation between focal length (f) and radius of curvature (R):
 $R = 2f$

Mirror formula:

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

Where,

f \Rightarrow focal length

u \Rightarrow object distance

v \Rightarrow image distance

Magnification:

$$m = \frac{h_i}{h_o} = \frac{-v}{u}$$

h_i \Rightarrow height of image

h_o \Rightarrow height of object

Law of Refraction:

$$\frac{\sin i}{\sin r} = \text{constant} \left({}^1\mu_2 \right)$$

i \Rightarrow angle of incidence

r \Rightarrow angle of refraction

{}¹ μ_2 \Rightarrow refractive index of medium 2 wrt medium 1

Effect on speed (v), frequency (f) and wavelength (r):

$$r = \frac{v}{f}$$

Refractive index:

$${}^1\mu_2 = \frac{\text{Speed of light in medium 1} (v_1)}{\text{Speed of light in medium 2} (v_2)}$$

$$\mu_{21} = \frac{\mu_2}{\mu_1}$$

Absolute Refractive index:

$$\mu = \frac{c}{v}$$

μ \Rightarrow Refractive index of a medium

c \Rightarrow speed of light in vacuum

v \Rightarrow speed of light in medium

Critical angle:

$$\alpha\mu_g = \frac{1}{\sin c}$$

$\alpha\mu_g$ \Rightarrow refractive index of glass w.r.t air

c \Rightarrow critical angle

Lens formula:

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

f \Rightarrow focal length

v \Rightarrow image distance

u \Rightarrow object distance

Magnification:

$$m = \frac{h_i}{h_o} = \frac{v}{u}$$

h_i \Rightarrow height of image

h_o \Rightarrow height of object

Power of lens:

$$P = \frac{1}{f \text{ (in meter)}}$$

Current Electricity

Quantization of charge:

$$Q = n \times e$$

Q \Rightarrow Total charge

n \Rightarrow no. of electrons

e $\Rightarrow 1.6 \times 10^{-19} \text{ C}$ [charge on one electron]

Electric current:

$$I = \frac{Q}{t}$$

I \Rightarrow current

Q \Rightarrow charge

t \Rightarrow time taken

Electric Potential (V):

$$V = \frac{W}{Q}$$

W \Rightarrow Work done

Q \Rightarrow charge

Potential difference (ΔV):

$$\Delta V = V_A - V_B = \frac{W}{Q}$$

Ohm's law:

$$V = IR$$

R \Rightarrow Resistance

Conductance:

$$\text{Conductance} = \frac{1}{R}$$

Specific Resistance (or Resistivity):

$$R = \frac{\delta l}{A}$$

δ \Rightarrow Resistivity

l \Rightarrow length of conductor

a \Rightarrow area of cross section of conductor

Conductivity (σ):

$$\sigma = \frac{1}{\delta}$$

Resistance in series (R_s):

$$R_s = R_1 + R_2 + \dots + R_n$$

R_s \Rightarrow Total resistance of series combination

n \Rightarrow Total resistors connected in series

Resistance in parallel:

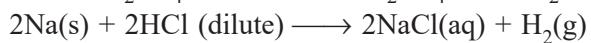
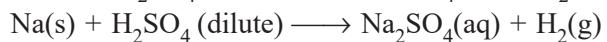
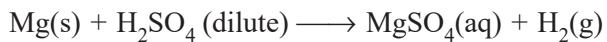
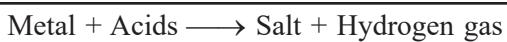
$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

R_p \Rightarrow total resistance of parallel combination

n \Rightarrow total resistors in parallel combination

Electrical energy:

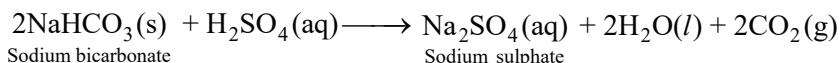
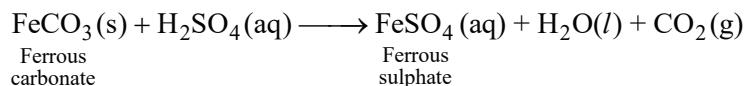
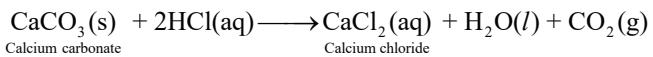
$$W = QV = Vit = i^2Rt = \frac{V^2t}{R}$$





Electrical Power:

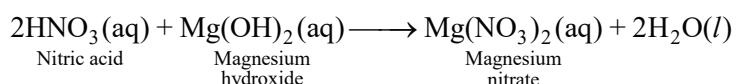
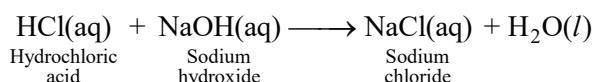
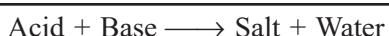
$$P = \frac{W}{t} = Vi = \frac{V^2}{R} = i^2R$$

Acids, Bases and Salts

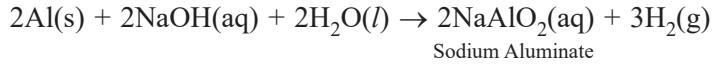
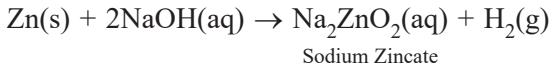
Chemical Properties of the Acids




Reaction of Acids with Metals

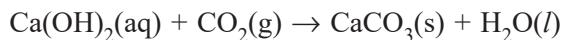
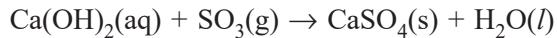
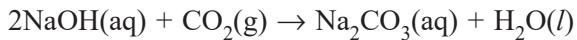
Reaction of Acids with Metal Oxides

Reaction of Acid with Metal Carbonates and Metal Bicarbonates



Reaction of Acids with Bases

The reaction between an acid and a base to give a salt and water is known as neutralisation reaction.

Chemical Properties of Bases

Reaction of Bases with Metals

Reaction of Bases with Non-metallic Oxides

Strength of Acids and Bases

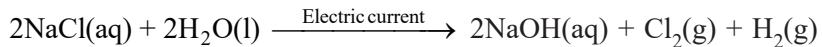
The pH of an aqueous solution is the negative logarithm of its H^+ ion concentration. That is,

$$\text{pH} = -\log [\text{H}^+].$$

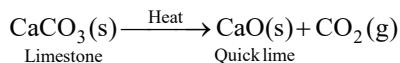
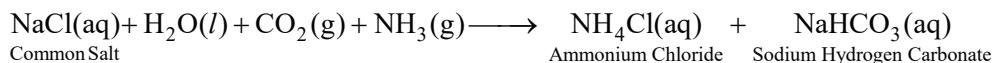
Just as the $[H^+]$ of a solution can be expressed in terms of pH value, the $[OH^-]$ can be expressed as pOH.

$$pOH = -\log [OH^-]$$

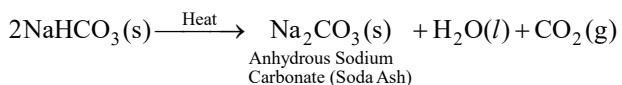
$$\boxed{\text{pH} + \text{pOH} = 14} \quad \text{at } 25^\circ\text{C.}$$


Salts

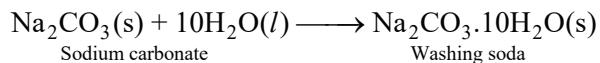
A substance formed by neutralisation of an acid with a base is called a salt.



Sodium Hydroxide (NaOH)

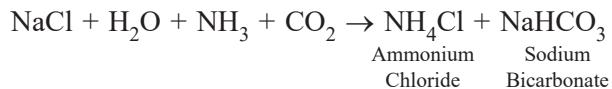
Preparation (chlor-alkali process)



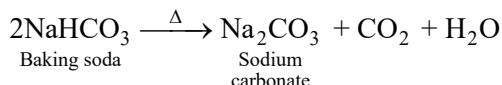
Washing Soda ($\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$)


First step:

Second step: Dry sodium hydrogen carbonate is heated strongly to give sodium carbonate

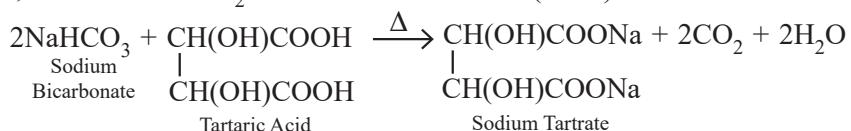


Third step: Sodium carbonate is recrystallized by dissolving in water to get washing soda. It is a basic salt.



Baking Soda (NaHCO_3)

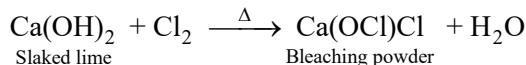
Preparation (Solvay Process)



Properties of NaHCO_3

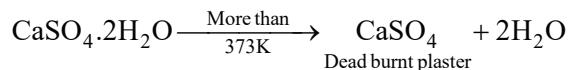
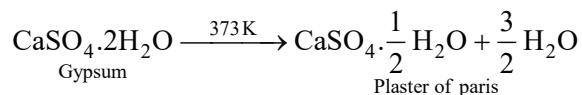
Uses of Baking Soda

During the bread preparation, the release of CO_2 causes the bread to rise (swell).

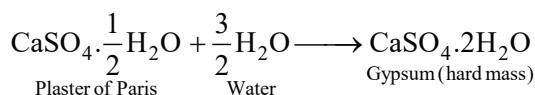


Bleaching Powder (CaOCl_2)

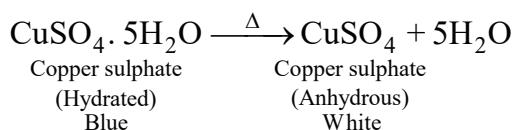
Bleaching powder is commercially called 'chloride of lime or chlorinated lime'.



Preparation

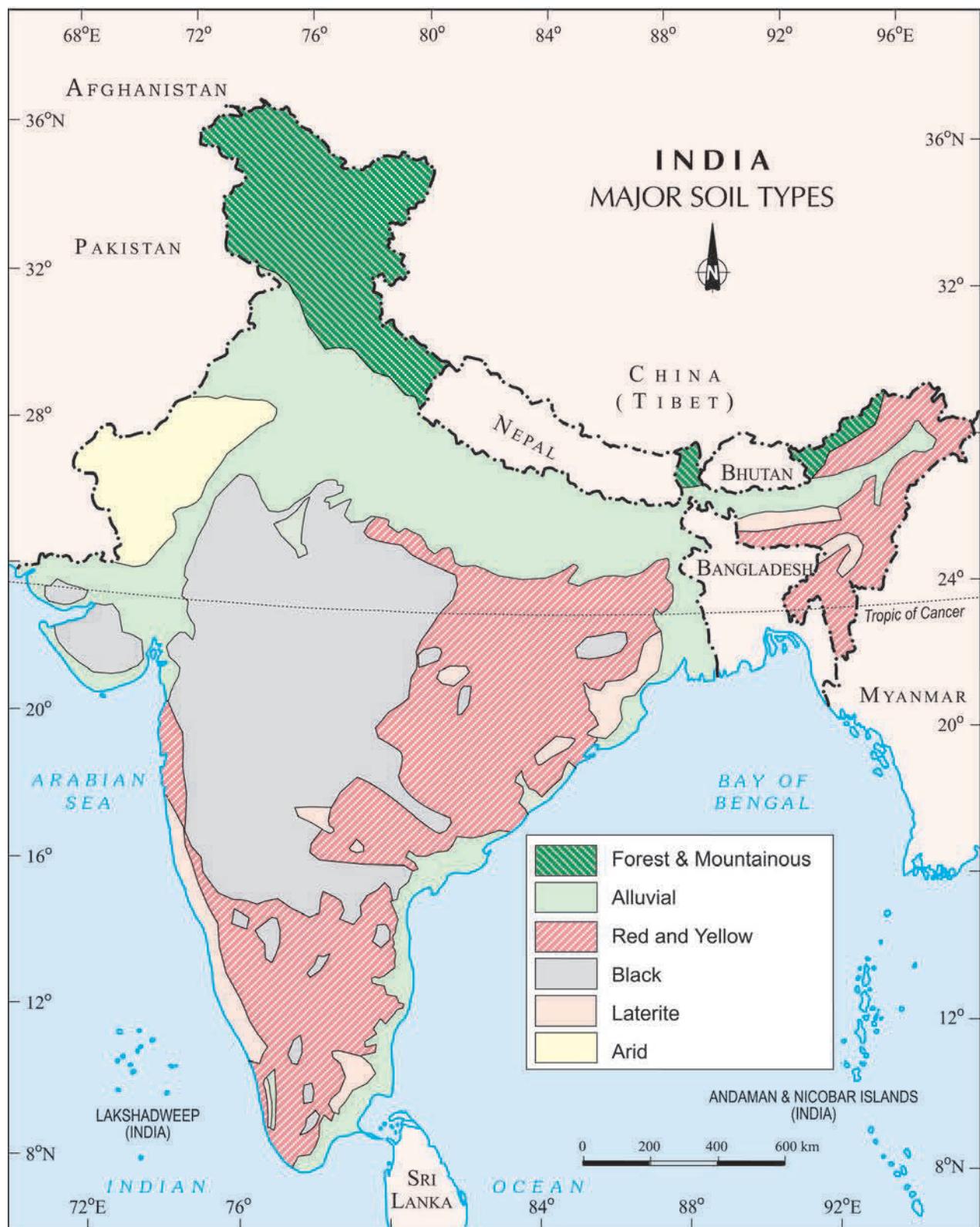
Bleaching powder is prepared by passing chlorine gas over dry slaked lime.



Plaster of Paris ($\text{CaSO}_4 \cdot 1/2\text{H}_2\text{O}$)

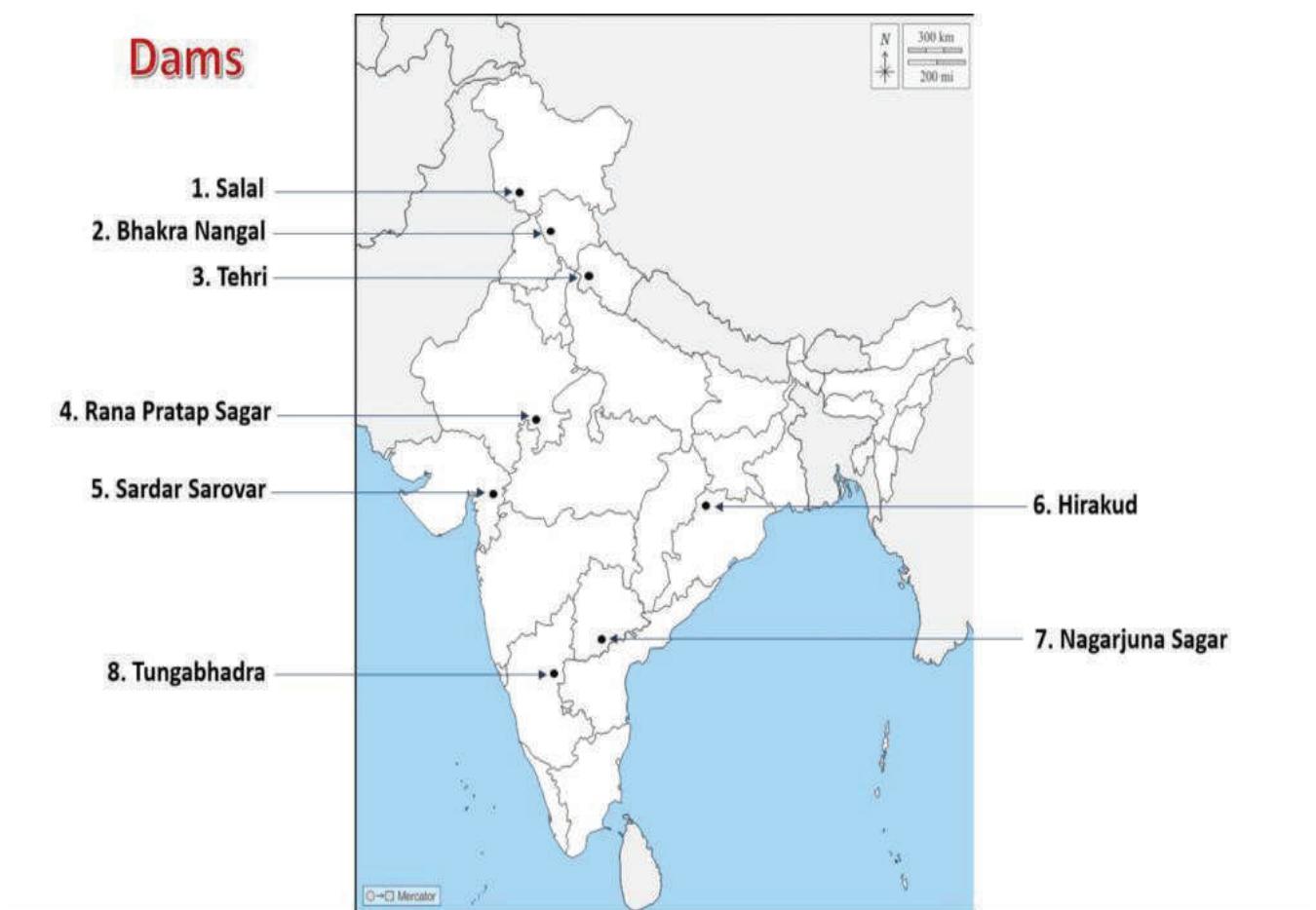

Preparation

Properties of POP



Water of Crystallisation

SST MAP WORK

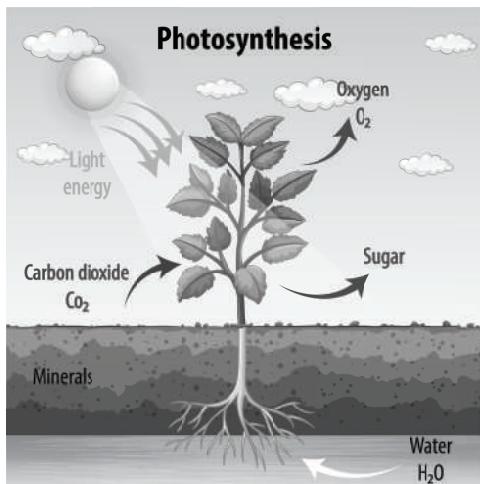

Chapter 1: Resources and Development (Identification only)

Chapter 3: Water Resources (Locating and Labelling)

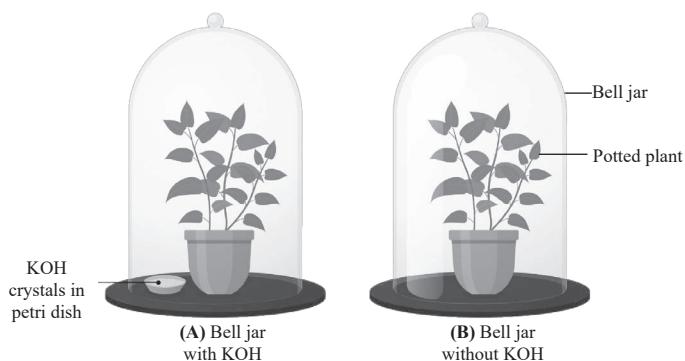
Dams:

1. Salal
2. Bhakra Nangal
3. Tehri
4. Rana Pratap Sagar
5. Sardar Sarovar
6. Hirakud
7. Nagarjuna Sagar
8. Tungabhadra

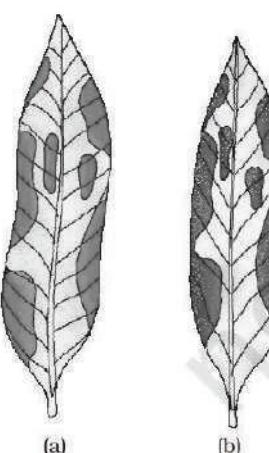
Chapter 4: Agriculture (Identification only)

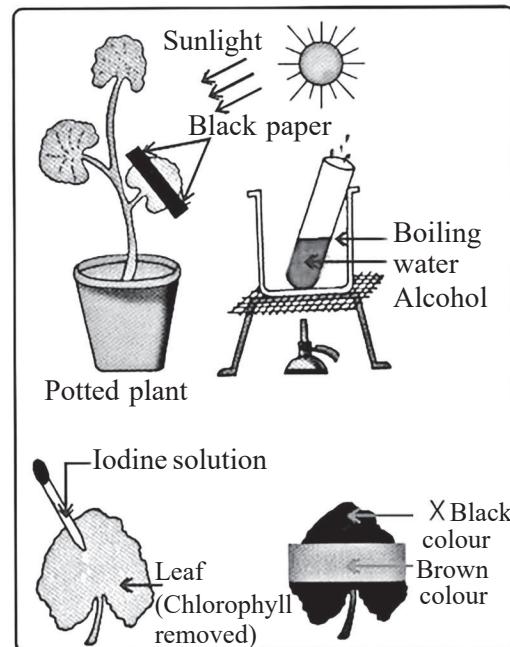

- Major areas of Rice and Wheat
- Largest / Major producer states of Sugarcane, Tea, Coffee, Rubber, Cotton, and Jute

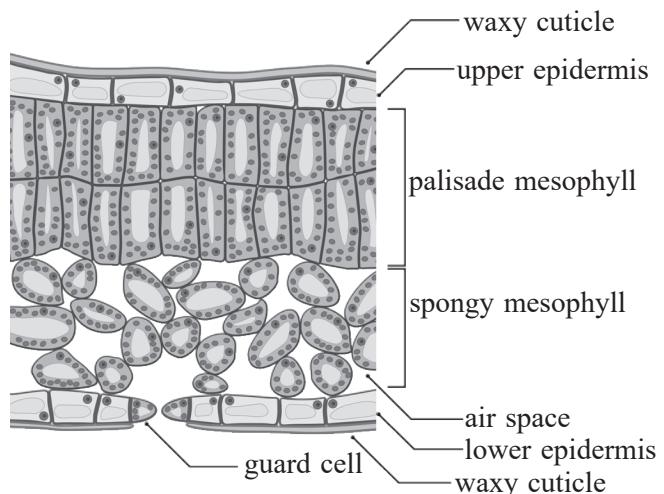
Rice - The main rice-producing states are Tamil Nadu, **West Bengal** (largest producer), Andhra Pradesh, Bihar, Odisha, Uttar Pradesh, etc.



India: Distribution of Rice


Life Process


Fig. 1: Green plants make their own food by photosynthesis


Fig. 2: Experimental Set-up (A) with potassium hydroxide (B) without potassium hydroxide

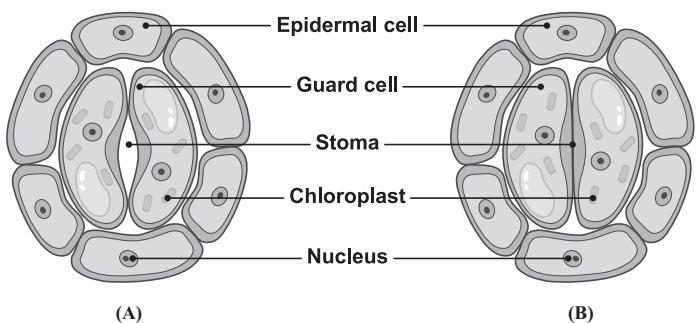

Fig. 3: Variegated leaves

Fig. 4: Demonstration to show the presence of sunlight is necessary for photosynthesis

Fig. 5: Cross Section of Leaf

Fig. 6: (A) Open and (B) Closed Stomatal Pore

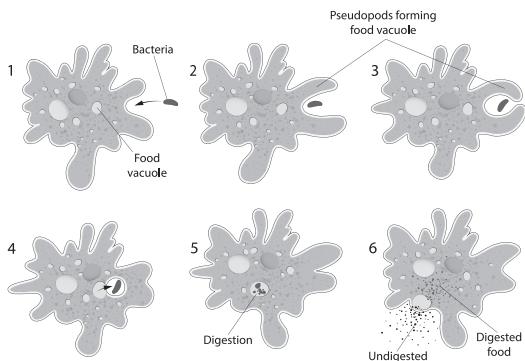


Fig. 7: Nutrition in *Amoeba*

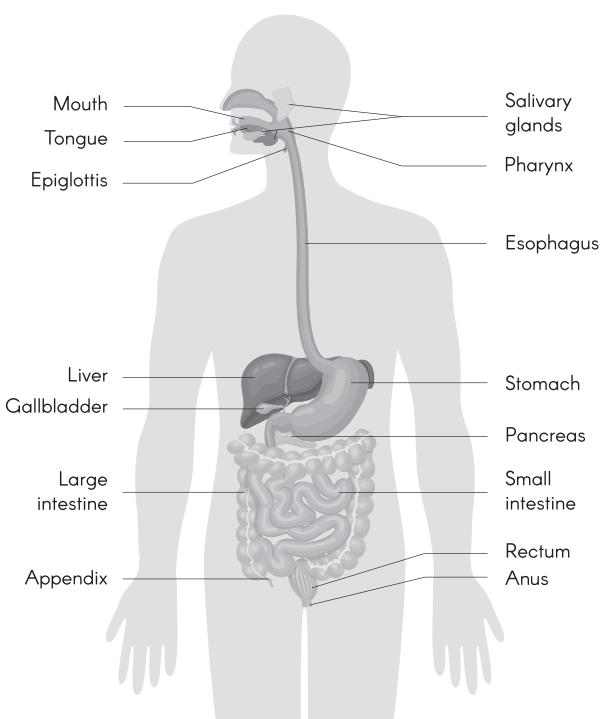


Fig. 8: Human Digestive System

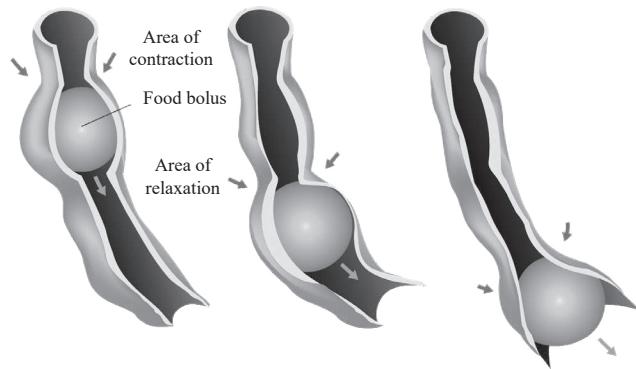


Fig. 9: Peristaltic Movement

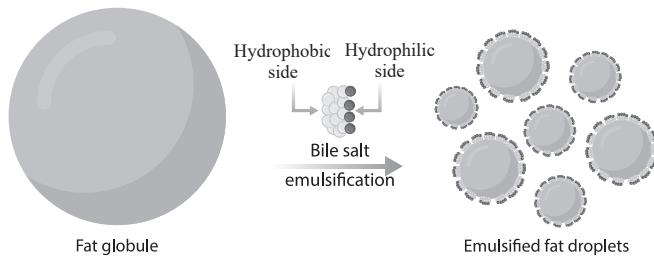


Fig. 10: Emulsification of Lipids

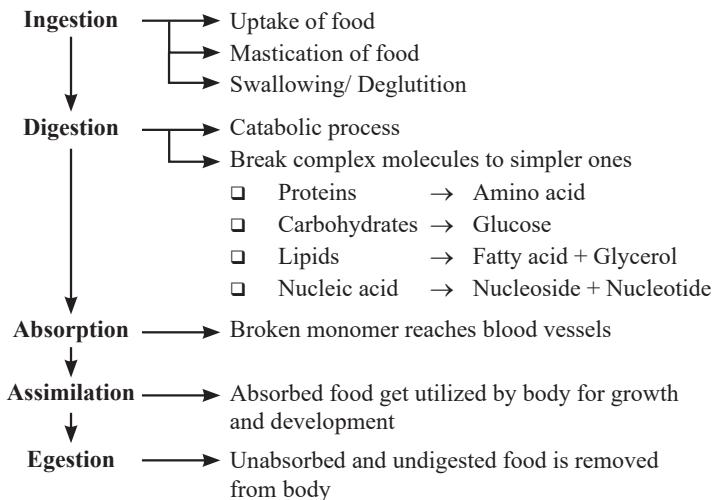


Fig. 11: Steps of Digestion process

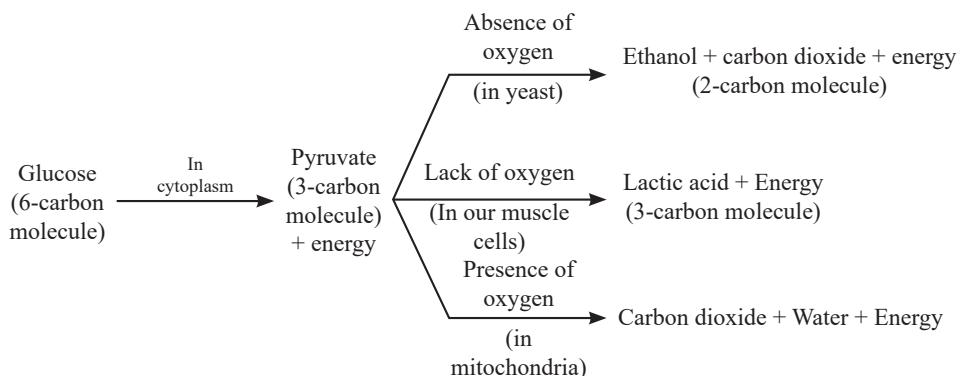
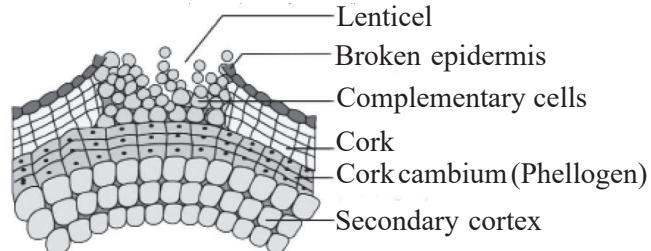
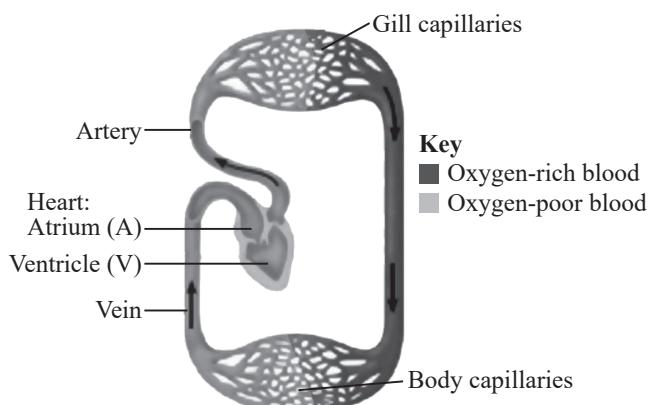
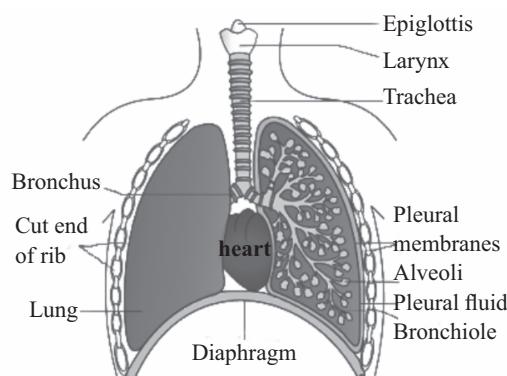



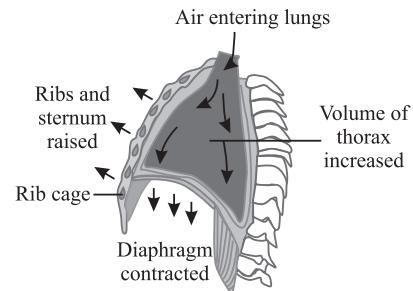
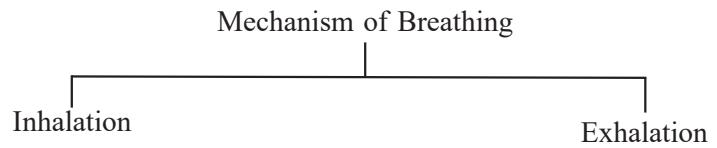
Fig. 12: Break-down of glucose by various pathways

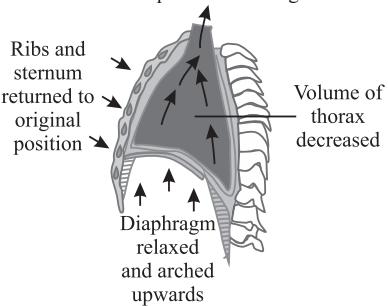
(a)



(b)


Fig. 13: (a) Lenticels on the Bark of the Tree, (b) Lenticel Inner Structure



Fig. 14: Pneumatophores in mangroves for gaseous exchange


Fig. 15: Single circulation: Fish

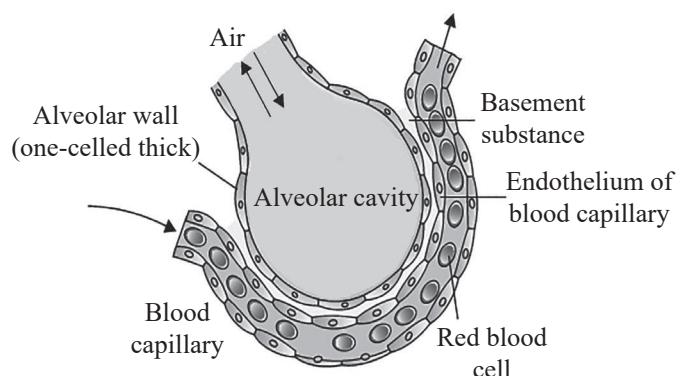

Fig. 16: Diagrammatic view of human respiratory system (sectional view of the left lung is also shown)

Fig. 17: Mechanism of breathing showing: Inspiration

Fig. 18: Mechanism of breathing showing: Exhalation

Fig. 19: A diagram of a section an alveolus with a pulmonary capillary

CBSE BOARD 2025

MEET OUR
NATIONAL TOPPER

580+ SCORED 99% ABOVE

10,000+ SCORED 95% ABOVE

Explore Limitless Opportunities, Shape Your Future With Us:

After Class 10th

**SCHOOL
PREPARATION**
UDAY Batch

NEET **IIT JEE**
COMPETITIVE EXAMS
ARJUNA Batch

**OTHER
OPTIONS**

CUET: (PRAVESH Batch)

CA Foundation: (SAMPURNA Batch)

MBA: (MBA FASTRACK)

GMAT: (GMAT STELLAR Batch)

CLAT: (CLAT ZENITH Batch)

Government Exams

JEE ADVANCED 2025

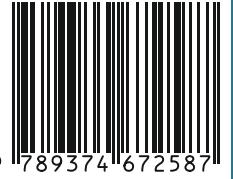
RESULT मतलब PW

**PHYSICS
WALLAH
PUBLICATION**

ALR2511033859

Visit Your
Vidyapeeth

SCAN ME!


To share
Feedback

SCAN ME!

₹ 149/-

ISBN 978-93-7467-258-7

9 789374 672587